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. The presence of -Slw and "fast* dynamics in large scale systems

has motivated the use of singular perturbations as a means of obtaining -

reduced order models for analysis and control law design. In this thesis We
establish how systems having this "vo-time-scale property can use singular

perturbation modeling to make this property explicit enabling various

reduced order analysis and design techniques to be applied. For deterministic

linear time-invariant systems, various techniques for obtaining reduced order

models are unified through left and right eigenspace decompositions. A

general two stage control dr--gn procedure for separate fast and slow sub-I
systems is developed which can be applied to both continuous and discrete

time models. Finally, Markov chain models of stochastic systems with 'Veak'

and "strong" transition probabilities lead to a singularly perturbed model

from which we obtain the concept of the reduced order"aggregate" chain.

For controlled Markov chains the aggregate model is used to develop decen-

tralized optimization algorithms for the discounted and average cost per

stage problems.
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CHAPTER 1

INTRODUCTION

The analysis and control of large scale systems has always been a

challenging problem to control engineers. The large dimension of the system

* model and the rich interactions make conventional simulation and design*

algorithms impractical if not impossible to use. The research direction in

this area has centered on obtaining reduced order models from large scale models

without sacrificing significant accuracy. These reduced order models are

- usually constructed in one of two ways. First, within a large scale model,

*several smaller subsystems are identified by their weak couplings to the

remainder of the system. These reduced order subsystems are treated

separately for simulation and design purposes with interactions between sub-

systems taken care of separately (1,2]. Second, the entire large scale model

is approximated by one reduced order model where the dynamics of the reduced

order model are determined by the "dominant" dynamics of the large scale

model [3,4]. Over the years, many names have been given to various methods

of order reduction. Of these methods aggregation and singular perturbations

* seem to be the most well known [5]. The analysis and design of singularly

perturbed systems has been well documented [6,7,8]. The multiple-time-scale

property of these systems has been used in developing reduced order models

and control laws for high order "stiff" models. This thesis further contri-

butes to the theory of multiple-time-scale systems and how they can be used

as a powerful order reduction technique for both the analysis and design of

large scale systems.
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In Chapter 2 we consider the linear time-invariant system

K I __dx(t) Ax(t) + Bu(t) (1.1)
dt

where x(t)e~ q , u(t)E6 p , and {aijl, {bij)eR Vij. Many seemingly unrelated

iterative techniques (9-12] have been proposed for transforming (1.1) into

( + (1.2)

0- D* w F*

where y Rn w m, and

min IX(A*)I < max 1X (D*)l (1.3)
i-l,..., - , . ,

(in (1.3), X i(Z) is the ith eigenvalue of the matrix Z). When such a trans-

formation is possible, (1.1) is said to have a "two-time-scale property."

These spectrum separation techniques can then be used for reduced order

modeling and design. Unfortunately, the convergence results of these iterative

techniques are either heuristic or conservative [10,12]. In this chapter we

unify and extend the results of time scale decomposition techniques to form

a composite theory from which all previous methods can be derived as variations

to the basic results.

In Chapter 3 we consider the time scale decomposition of singularly

perturbed systems. For this problem (1.1) takes the form

12 + u (1.4)
2 A21 A 22 B2
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where x1 Rn, x2 Rm , and O< P<< 1. In this case, the singular perturbation

parameter u explicitly defines the presence of a two-time-scale phenomena.

Using this parameter, two-time-scale asymptotic expansions [8,13] of the

state vector can be used to obtain a reduced order solution to (1.4). 'n this

chapter we show the relationship between the "spectrum separating" it tive

techniques of Chapter 2 and matched asymptotic expansions used for si ;arly

- perturbed models. The results of these two chapters establish a unif.. - theory

of time scale decompositions in linear time-invariant systems. In the remainder

of this thesis we consider a class of stochastic systems in which the results

from both singular perturbations and aggregation techniques are applied.

Markov chains and Markovian decision processes have long been used

in the analysis and design of stochastic systems (14,15]. Some of the

application areas of Markov modeling included the following:

i. Numerical solutions to stochastic control problems [16]

ii. Inventory theory (17]

iii. Queuing theory [18].

Markovian decision processes can be traced back to Bellman's development of

Dynamic Programming (19,20] where many of the Markov chain control problems

were formulated. Since this time, many design algorithms for a variety of

controlled Markov chain problems have been developed. The theoretical richness

of this area has kept it popular with researchers. However, the practical

usefulness of Markov models and Markovian decision processes has been

severely limited due to the extremely large dimension of most Markov chains.

The computational burden of these problems has discouraged systems engineers

from using Markov chains for modeling purposes. Recent applications in

queueing theory [21] and the management of hydrodams [22] have exhibited
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Markov chain models with a "weakly coupled" structure suitable for perturba-

tional analysis. In recent years, authors [23-25] have used this structure

to construct reduced order aggregate models for large Markov chains. Since

the aggregate models were developed using an intuitive understanding of the

process dynamics, the results were limited and a more complete theory needed

in order for this concept to become useful for analysis and design. Therefore,

in Chapter 4 we show how a weakly coupled Markov chain can be transformed into

a singularly perturbed system model. Then, the decomposition techniques of

Chapters 2 and 3 can readily be applied.

In Chapters 5 aid 6 we consider the problem of optimally controlling

Markov chains with respect to certain performance measurements. In general,

these problems are computationally horrendous. However, by applying the

results of Chapter 4, a near optimal policy can be found using a simplified

decentralized optimization algorithm. In Chapter 5 we consider the discounted

cost problem (15] and in Chapter 6 the average cost per stage problem [15].

Finally, in Chapter 7 we draw conclusions and point to a number of

research directions to which this thesis leads.

- - -
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CHAPTZR 2

EIGENSTRUCTURE DECOMPOSITION OF TIME SCALES

IN LINEAR-TIME INVARIANT SYSTEMS

2.1. Introduction

Many control theory concepts are valid for any system order,

however, their actual use is limited to low order models. Large scale

systems result not only in a formidable amount of computation, but also in

ill-conditioned initial and two point boundary value problems. The inter-

action of fast and slow phenomena in high-order systems results in stiff

numerical problems which require expensive integration routines. The singular

perturbations approach to decomposing fast and slow phenomena involves using

a time-scale separation technique. In this case a reduced order "steady

state" and "boundary layer" solutions are obtained from a high order model..3
Control designs and simulations for the high order model are then carried out

on the reduced order subsystems.

It is the purpose of this chapter to unify and extend the results

of previous authors [6-12] and attempt to provide a sense of completeness to

the theory of time-scale separation in linear systems. Given the linear time

invariant homogeneous system

A B [yo (2.1)
i C D z (t 0 =Z

yER n , zG Rm

our purpose is to transform it into either

L -[A. B:j [j (2.2)
0



or

[ rj(2.3)

such that

min a(D.)I > max a l(A (2.4)

or

minlo(D:)l >maxclv(A:). (2.5)

Any system (2.1) which has this property is said to satisfy the two-time-

scale property for dimensions n and m.

In Section 2.2 earlier methods of time-scale decomposition used to

transform (2.1) into (2.2) and (2.3) are briefly reviewed. Then using a

modified form of dominant left and right eigenspace power iterations the

equivalence of these past iterative schemes is established. This enables us

to define unified conditions for convergence of algorithms as well as the

convergence rates.

Section 2.3 completes the block diagonalizations of (2.2) and (2.3)

and identifies "fast" and "slow" components of our original state vectors.

The explicit invertibility of the transformation matrices is shown. This

becomes very important in later chapters.

In Section 2.4 we consider the problem or properly ordering the

state variables. A recently developed "grouping algorithm" [34] used for

power networks is shown to be directly applicable.

Finally, in Section 2.5, an example is given of the eigenspace

decompositions.
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52.2. Left and Right Eigenspace Decomposition

In the first part of this section we briefly review two well known

-* iterative methods for transforming (2.1) into (2.2) or (2.3). We then intro-

3 duce the dominant left and right eigenspace power iterations. Using modified

versions of these iterations, it is possible to show the equivalence of the

1 .. earlier methods. Less conservative conditions for the convergence of

Ialgorithms as well as convergence rates are also obtained.
i) Quasi steady state method (6]

This method was motivated by singularly perturbed models. Assume

* that the states are ordered such that D-1 exists. This assumption is

standard in studies of singularly perturbed systems. However, as will be

presented later, this assumption can be justified.

If the eigenvalues of D are such that the real parts are large and

negative, then the homogeneous solution of z converges to a steady-state

3 rapidly. If this convergence is assumed to be instantaneous, then i-0 and

this quasi steady state assumption yields

zs - -D- Cys. (2.6)

Next we try to remove this slow part of z by introducing

ni z + D-1 Cx (2.7)

which transforms (2.1) into



"2?."

8

D (A-BD C) B

17A,~~ (2.8)

Repeating steps (2.6) and (2.7) k times results in the following

1- k k _lCky no-Z (2.9)

k k-l B ]

- B(2.10)

. " Ck D n

where the subsystem matrices are defined as

Ak - Ak_ - BDklCkl A - A (2.11)[0

C k -DklCkiAkC0 c- C (2.12)

D +Dk - C B Do-D. (2.13)
k k-i+ k-i k-i

* Experimental results, motivated by singular perturbations, have

converged to the form (2.2) satisfying spectral property (2.4).

The dual to this procedure involves removing the fast parts of the

* y states. Such a procedure would transform (2.1) into (2.3) satisfying

condition (2.5). [12] proposed this dual procedure which led to matrix

recurs ions

Ak - Ak_- BklDk'lC A -A (2.14)

B = A 1kklDk 1 B - (2.15)
k 0 k_ k _  DoD 0

D -D +CB D- D D. (2.16)
*k k-1 k-I1 k-I 0
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Again, while experimental results have proved successful, conditions-for.. - --....

convergence as well as convergence rates are unavailable.

ii) Algebraic Riccati equation method [10]

In [10, 11, 26,27], the transformation of the form

n" Z+ Py (2.17)

is proposed in an attempt to transform (2.1) into (2.2). By applying (2.17)

to (2.1), we obtain

67- A-BPB
(2.18)

[:lC-DP+ PA-PBP D+PB l

p The problem is to find the solution P to the Riccati type equation

R(P) - C-DP+PA-PBP - 0 (2.19)

such that A-BP and D+PB have the spectral properties (2.4). Such spectrum

dependent solutions have been referred to as "dichotomic" [281. We will

throughout the rest of this thesis continue to refer to this solution by

this label.

Earlier work by [101 and more recent work by [9] have resulted in

L "the following iterative recursion formula for obtaining the dichotomic

solution to (2.19)

- -1
Pk+l " Pk + (D+PkB) R(Pk) (2.20)

P - D-1c

which gives the subsystem matrices in (2.2) at each k as
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A k A- BSF- A 0-A Q (.21)

Dk-- D+~kiB- (2.22)

Ck- R(Pk_1 ) - DPk_ l+Pk 1A- PkiBPk~i Co- -(2.23)-

Likewise,* (11,35] have proposed the dual to the Riccati method via the trans-

formation

- (2.24)

which transforms (2.2) into

.APC A^ -di 
(2.25)[:1 [ACD A +CP-PD

The problem is again to obtain the dichotomic solution P to the Riccati type

equation

S(i) - P+ B- CP- iD - 0 (2.26)

such that A-PC and D+CP have spectral properties (1.5). From (11,361 the

following iterative scheme was derived for obtaining the dichotomic solution

to (2.26)

-~l'P k+S(P k)(D+ CPk) (.7

P - BD' (2.28)

which leads to the matrix equations for (2.3) as

Ak- A- k-,C A-0A (2.29)

D, ) D+Cd D -D (2.30)
kk- 0

B k- S(P - B k Pk-1 D +AP k-P k1CP klB 0 B. (2.31)
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SWhile some convergence results are available [9,10] for the matrix recursion

(2.27), they are either conservative or limited to solving only (2.26). We-

now unify and extend these results by showing that these iterative techniques

are equivalent to either dominant right or left eigenspace power iterations.

We now give a lemma which establishes a convergence criterion for

(2.27) based on dominant left eigenspace power iterations. In the process,

we shall show that (2.1l)-(2.13) and (2.21)-(2.23) are equivalent at every

iterate.

Lemma 2.1: Given (2.1), if the spectrum is concentrated in two groups of m

such n eigenvalues such that

maxlX I < minIX I. (2.32)

i-l,n =Jlm

Then under mild restrictions [29] on the initial iterate Po (2.27) will

converge to the dichotomic solution of (2.26) at a convergence rate of e k

* where

maIx 19i i l,n (.3

minlkjI j(l,m " (2.33)

Proof: The well kno-in power iteration method (30,311 for computing a m-

dimensional basis for the dominant left eigenspace of (2.1) is of the form

[Mk Vk - Rk[Mk-1 "k-] [A ]BI (2.34)

R k is a nonsingular mxm scaling matrix used, for example, to keep

the rows of [X Nk] strongly independent and the individual components

within a practical range of computation [31]. Many methods have been proposed
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Ufor selecting the sequence of R 's and the interested reader is referred to

[29] and [31]. The analytical convergence of (2.34), however, is indepen-

dent of Rk. Thus, under condition (2.32) and mild conditions on [M0 N ], it is

known that (2.34) converges to the dominant m-dimensional left eigenspace of

(2.1).

Expressing the common iterates as

Mk -k_1 A  + Nk-iC M -c (2.35)

N; 1 (D+ N l N 1  D- (2.36)
Nk-l 0

We can form the product

Nk'Mk -CD+NLi; 1 H.kB) 
1 (C+N-l MklA) . (2.37)

Letting P k I gives (2.37) as

Pk = (D+Pkl B)- (C+Pkl A) P =D-1 C (2.38)

which is equivalent to (2.27) Vk> O.

To show the solution is dichotomic, P is of the form

P - N-lM. (2.39)

Without loss of generality we can take (M N] = [V1 V2] where

[V1 V2] are the m left eigenvectors corresponding to the m dominant eigen-

values, thus

p = v-1v
2n1

and,
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(V1  V [A 3B] [1l 3 (V1  V2] (2.40)

or,

V A+ V2 jl(2.41)
1

V B +VD J V (2.42)1 2 22

However, from (1.16)

C V'lVjA DVlVl + V -V BV2-V

which leaves both (2.41) and (2.42) in the form

V (D+ V;'V B)V;' - J (2.43)

U verifying the desired spectral decomposition we can now show the equivalence

of (2.1l)-(2.13) and (2.2l)-(2.23).

Corollary 2.2: The matrix iterations (2.1l)-(2.13) and (2.2l)-(2.23) are

equivalent at every k. Thus, the just provided convergence properties of

(2.2l)-(2.23) are propagated to (2.1l)-(2.13).

Proof: Substitution of (2.20) into (2.2l)-(2.23) results in

A-Pk-i AB k-2-BD k-2B R(Pk-2) (2.44)

D+Pk-i D k-2 B+(D+ Pk-2 B) 1.R(P k-2)-B (2.45)

C k -R(P kl) (D+ Pk-2B)l R(P k-2 )(A-BP k-l (2.46)

* Letting

k A- BP kl (2.47)

kn+ B- (2.48)

ak=C k(2.49)



14

(2.47)-(2.49) become

%.k - Byklakl - A (2.50)

y + kB Y D (2.51)

~~~k " k-1 + k-1°k-l o" (.1

-1 -C (2.52)ak = k-i'k-l'k 0o

which are equivalent to (2.11)-(2.13) Vk_ 0.

We now cite a lemma (9] which is the dual to Lemma 2.1 and

establishes the conditions of convergence of (2.27) based on dominant right

eigenspace power iterations.

Lemma 2.3: If the spectrum of (2.1) satisfies (2.32), then under mild

restrictions on P [9], (2.27) will converge to the dichotomic solution at a0

convergence rate of ck where e is defined in (2.33).

Proof: The well known power iteration method (29,30] for computing an X

dimensional basis for the dominant right eigenspace of (2.1) is of the form

_A-B (2.53)

4 4

where the scaling matrix R.k serves the same purpose as explained in Lemma 2.1.

Thus, under mild restrictions on N is is well known that (2.53) con-

verges to the dominant m-dimensional right eigenspace of (2.1).

Expressing (2.53) as

k - Ak-l I ENk- M B

N-1 . -1 (+CkN-1 )-1 N-.D1
k k1 +f. U -1 -1
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~ 5form the product

V .- 1 -1 -1 -1
M& B - (+,MklNk (D+ C1Nkl) (2.54)

I..

Letting

ik - ,

P k-+ . (B+ AP k)(D+ Cdk) I  (2.55)

-r P - BD-  (2.56)• 0

which is equivalent to (2.27) k 0. Proving P is dichotomic is carried out

as in Lemma 2.1 and can be seen in [9,36].

Finally, we can show the equivalence of (2.14)-(2.16) and (2.29)-

(2.31).

Corollary 2.4: The matrix recursions (2.14)-(2.16) and (2.29)-(2.31) are

equivalent at every k, thus, the convergence properties of (2.55) are pro-

pagated to (2.14)-(2.16).

Proof: Substitution of (2.27) into (2.29)-(2.31) gives

A- i C - A-Pk 2 C
- S(Pk_)(D+ CPk 2 )-C (2.57)

D+ CPk_1 - D + CPk-2 + CS(Pk-2 )(D+ CPk-2 )
-  (2.58)

Bk = S(Pk_) - (A-PkIC)S(Pk-2 ) (D+ CPk-2
) . (2.59)

Letting

ak - A-P k-l C (2.60)

Yk = D+ CPk_ (2.61)

Ek a Bk (2.62)
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gives

-'11C =-A (2.63)

- Yk + CSk Ykl Y =D (2.64)

Ik - -lyk o-=B (2.65)•. k = akBkliYk I  03 (.

which are equivalent to (2.14)-(2.16).

Thus, the dominant left and right eigenspace iterations of (2.38)

and (2.55) can be used to transform (2.1) into (2.2) and (2.3) respectively,

requiring only that there exists a corresponding separation in the original

spectrum. In the next section (2.2) and (2.3) are block diagonalized so as

to isolate the fast and slow dynamics of (2.1).

2.3. Block Diagonalization and Identification of Fast and Slow State

Vector Components

Once we have transformed (2.1) into (2.2) or (2.3) satisfying

conditions (2.4) or (2.5) respectively, block diagonalization is always

possible.
4

Consider form (2.2), and the transformation (2.17) used to obtain

this form. The dichotomic solution matrix P is of the form

* P - N1'M

where the rows of (M N] span the dominant left eigenspace of (2.1). Thus,

the exact form of (2.2) is

A-BP B 

(2.66)0 D +(2.66)
0 +PI
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),Now, let x-y-Qw. This leaves (2.55) in the form

"I[ [A-BP (A-BP)Q-Q(D+PB)+B[] 
(2.67)

Thus, we seek Q to satisfy the Lyapunov type equation

(A-BP)Q- Q(D+ PB)+ B - 0 (2.68)

== Such a Q will always exist since

o(A - BP) n a(D +PB) =  (2.69)

(2.68) may be solved algebraically 32 ] or iteratively (101. One obvious

iterative scheme is to apply the dominant right eigenspace iterations used

for transforming (2.1) into (2.3). Since (2.66) satisfies (2.32) convergence

Uis assured. Such an iteration would take the form

Qk+l : (B + (A - BP)Qk)- (D + PB)

Q =0

whichever method used, the resulting system is of the form

= 
B (2.70)

L* 0 D +BI

and the composite transformation is

SI x (2.71)

-P I- Q 1

which possesses the explicit inverse

qo
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J[ (2.72)
xP I

lThus, we have decomposed the y and z state vectors into their respective

"fast" and "slow" components. Namely

y -x+Qw -Yslow + Yfast (2.73)

z = -Px + (I - PQ)w Zslow +Zfast (2.74)

where

x(t) = e(A -BP)tx xo 
= (I - QP)yo -Qzo

w(t) - e +P)tw w° =Pyo +zo oo

Such decompositions will become more important when we consider singularly

perturbed systems in the next chapter. There, the fast and slow components

take on the names of "boundary layer" and "steady state components".

Now consider form (2.3) and the transformation (2.24) used to obtain

this form. The dichotomic solution matrix P is of the form

p MN (2.75)

*Where the columns of [M span the dominant right eigenspace of

(2.1). Thus, the exact form of (2.3) is

S][ C DCPI (2.76)

Now, let w=z+Qx. This transforms (2.76) into the form

(A= LA- c-D+CPQ+C D+G [] (2.77)

L.4A C-D+ QC DC
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3 Thus we seek Q to satisfy the Lyapunov type equation

Q(A- PC) - (D+CP)Q+C-O (2.78)

such a Q will always exist since

o(A -PC) n (D + CP) -0 (2.79)

*, Again, (2.78) may be solved iteratively or algebraically. Applying the

dominant left eigenspace iterations to (2.76) convergence is assured. This

iteration takes the form

Qk+l - (D+CP) (C +Qk(A PC)) &o "DC (2.80)

The resulting system is of the form

M .[k(2.81)
0 D+C]rz

and the composite transformation is

(2.82)

with also possesses the explicit inverse

Thus, we have again decomposed the y and z state vectors into

"fast" and "slow" components. Namely

y = (I- )x + Pw = Yslow + fast (2.84)

z=-QX+w= Zs low 
+ Zfast (2.85)
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where

Sx(t) me 0 X 0 =Yo " iz0

w(t) -e(D + CP)w w yo +( T-"QP)i

The relationships between various fast and slow components of (2.1) wil be

an important topic of the next chapter.

2.4. Ordering of State Variables

In the results of the previous two sections it was always assumed

that there existed an ordering c-f states such that D existed as well as

N- in (2.39) and (2.54). While (37] guarantees the existence of such an

ordering, vntil recently no jystematic algorithm.was available to achieve

this ordering of states. [34] has developed a "grouping" algorithm for

the area decomposition of power networks. By applying this algorithm to

the left or right dominant eigenspace of (2.1) the necessary ordering of

states can be obtained.

Let F be the system matrix in (2.1) and let V correspond to the

matrix of right eigenvectors. Thus, F-VAV-I where A is the eigenvalue

matrix. If k- Fx, and we let x-Vy, then

x(t) Ve y(O). (2.86)

Partition V as V- [Vf V ] where V and V are the right eigenvectors
friis f s

corresponding to the fast and slow spectrum respectively. Each row i of

V- "weighs" the contribution of the fast modes to state x.. If V- has ni r

columns, we want the m rows of Vf that are the most linearly independent

to correspond to our fast states. This can be done by performing a Gaussian
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elimination with complete pivoting (34] on the rows of Vf. If we call Vf

the m most linearly independent rows of Vf and permute the states such that

Svf W ._ (2.87)

Then since FVf VfAf, we obtain

12-1) 2 2 -188
D+C(V f (Vf) vf f(vf (2.88

where Af is the dominant eigenvalue matrix of dimension m. By this

2construction, Vf =N in (2.54) and the proof of dominant right eigenspace

iterations follows.

Now partition V-1 as W where Wf and W are the left eigen-

vectors corresponding to the fast and slow spectrums of F respectively.

Again, since Wf has m rows, we want the m columns of Wf that are the most

linearly independent to correspond to our fast states. This again can be

done using Gaussian elimination. If we call Wf the m most linearly indepen-

dent columns of Wf and permute the states such that

Wf : [W1  W2]. (2.89)

Then since Wf F= AfWf, we obtain

D + (W2)-Iw1B (W 2I, 2 (2.90)f f) f f*
-i

Thus, N will exist in (2.37) and the proof for the dominant left eigenspace

iterations follows.
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13~ Thus, depending on whether you want to transform (2.1) into (2.2)

or (2.3), the ordering of states can possibly be different using the above

methods. However, in general, the state orderings resulting from these

methods are not the only such orderings which possess the desired properties.

In many cases a given ordering of states will satisfy the conditions necessary

for the application of both left and right eigenspace iteration. The

application of the "grouping" algorithm merely assures us that there exists

orderings of states which satisfy the conditions assumed in the lemmas. In

* many cases, such as singularly perturbed models, the proper ordering of

states can be done by inspection.

2.5. Example - Decomposition of States into Fast and Slow Components

In [39], the 8th order model of an isolated mixed power system is

given as

-.2 0 0 0 0 0 0 0

4.75 -5 0 0 0 0 0

*0 .16667 -. 16667 0 0 0 0 0

o0 2-2 0 0 0 0

0 -. 08 -. 07467 -. 112 -3.9944 10 -. 912778 -9.1

0 0 r. 0 .? -. 5 0 0

0 0 0 0 0 -1.39 -,278

L a. 01 .0093 .014 -. 06319 0 .11597 -. 112361

(2.91)
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p $using a permutation of x-Py

P -(el,e 3 ,e61e8,e5 ,e43 e7,e2)

gives

-. 2 0 0 0 0 0 0 0

-.167 0 0 0 0 0 .167

0 -. 5 0 .2 0 0 0

0 .009 0 -.112 -.063 .014 .116 01
y

0 -.075 10.00 -9.101 -3.994 -.112 -.927 -.08

0 2.00 0 0 0 -2.00 0 0
0 0 0 -. 277 1.319 0 -- 1.386 0

_4.75 0 0 0 0 0 0 -5.O0

(2.92)

The eigenvalues of (2.92) are

-1.3884147 + O.O000000J

-0.1291288 + 0.2124795J

-0.1291288 0.2124795J

-4.3489879 + O.O000000J (2.93)

-2.0000000 + O.OOOOOOOJ

-0.1666700 &. O.OOOOOOOJ

-5.0000000 + 0.OOOOOOOJ

-0.2000000 + O.OOOOOOOJ

For n -m=4, we obtain an F of .1792. Using the dominant left

eigenspace iterations we obtain

F -0.20000 0.00000 0.00000 0.00000

A-P B - 0.15834 -0.16667 0.00000 0.00000 (2.94)-0.00312 -0.00766 -0.08981 -0.36571

0.00877 0.02153 0.09635 -0.22145

which has eigenvalues

L . . . . _ _ ____ +
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-0.15563 + 0.17579J

-0.15563 - 0.17579J (2.95)

-0.16667 + O.O0000J

-0.20000 + O.OOOOOJ

-4.52014 -0.08640 -0.71572 -0.05533

D+BP - 0.00000 -2.00000 0.00000 -0.16667 (2.96)
0 0.80733 0.02712 -1.16426 0.02543

0.00000 0.00000 0.00000 -5.00000

which has eigenvalues

4-4.33808 + O.OOOOOJ

-1.34632 + O.OOOOOJ (2.97)

-2.00000 + 0.OOOOOJ

-5.00000 + O.O0000J

* using the dominant right eigenspace iterations we get

-0.20000 0.00000 0.00000 0.00000
- 0.15834 -0.16667 0.00000 0.00000 (2.98)

0 -0.00312 -0.00766 -0.08981 -0.36571

L 0.00877 0.02153 0.09635 -0.22145

which has eigenvalues

-0.15563 + 0.17579J

-0.15563 - 0.17579J (2.99)

-0.16667 + O.O0000J

-0.20000 + O.OOOOOJ

-4.31691 -0.03023 0.04757 -0.05415

D+PoC - I0.00000 -2.00000 0.00000 -0.06667 (2.100)
D 1.32208 0.00179 -1.36749 0.00051(

L o.ooooo 0.00000 0.00000 -5.00000

"1
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U Which has eigenvalues

-4.33808 + O.O0000J

-1.34632 + O.OOOOOJ (2.101)

-2.00000 + 0.OOOOOJ

-5.00000 + O.00000J

To show how this accuracy may be improved, after two iterations we obtain

0 -O. 20000 0. 00000 0.00000 0.00000

A-PB = 0.16492 -0.16667 0.00000 0.00000 (2.102)
0.00233 -0.00741 -0.08420 -0.36234

0.00979 0.02836 0.13210 -0.17633j

with eigenvalues

-0.13027 + 0.21388J

-0.13027 - 0.21388J (2.103)

-0.16667 + 0.O0000J

-0.20000 + 0.00000J

"-4.52468 -0.08664 -0.71767 -0.055711

D + BP1  0.00000 -2.00000 0.00000 -0.18172 (2.104)
0.76779 0.02154 -1.21045 0.01334

0.00000 0.00000 0. 00000 -5.00000

with eigenvalues

-4.34912 + O.OOOOOJ

-1.38601 - O.OOOOOJ (2.105)

-2.00000 + O.O0000J

-5.00000 + 0.00000J

-0.20000 0.00000 0.00000 0.00000

= 0.16379 -0.16667 0.00000 0.00000 (2.106)A- -CP1  216

-0.00287 -0.00609 0.00444 -0.45814

0.00821 0.02283 0.13946 -0.26497
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with eigenvalues

-0.13027 + 0.21388,

-0.13027 - 0.21388J (2.107)

-0.16667 + 0.oooooj

-0.20000 + o.oooooJ

r-4.37192 -0.03420 -0.05145 -0.05565"

D+PC 0.00000 -2.00000 0.00000 -0.06896(2.108)
1 1.32327 0.00202 -1.36,'21 0.00048

0.00000 0.00000 0.00000 -5.00000

with eigenvalues

-4.34912 + 0.OOOOOJ

-1.38601 + 0.00000J (2.109)

-2.00000 + 0.OOOOOJ

-5.00000 + O.OOOOOJ

We now give graph of selected states along with their fast and

slow components using (1.85), (1.86), (1.96) and (1.97) for both the left

and right eigenspace decompositions. The plots will be based on the Po and

P iterates. On the graphs of the individual components, the following

* legend will be in effect

ACTUAL STATE

SLOW COMPONENT ---------------

FAST COMPONENT ................

On the graphs of the actual state versus the approximated state

ACTUAL STATE

APPMOXLMATED STATE..............

The plots appear on the next several pages. The system is perturbed
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* with an initial state vector of

T; (1, 2,9 3. -2, 1., -1, 4, 2). (2.110)
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CHAPTER 3

ASYMPTOTIC SERIES DECOMPOSITION OF TIME-SCALES
IN LINEAR TIME-INVARIANT SYSTEMS

* "3.1. Introduction

When small parameters are present in differential equations defining

initial or boundary value problems, one of the popular methods used

[30] is to obtain an asymptotic power series expansion of the solution. Such

techniques have been well documented and can produce approximate solutions

to problems where otherwise explicit analytic solutions are impossible or

exact numerical solutions are computationally not practical. Such systems

are of the form

= f(X,t,E) x(O) = x (3.1)

and a solution is sought of the form

x(t) -x°(C) + Ex (t)+ ..... (3.2)

When such an expansion converges uniformly in t as E- 0 we have a regular

perturbation problem [8 ]. If there is a region of nonuniformity, usually

at one of the boundaries, we have a singular perturbation problem. In most

cases, the dynamics of the solution vector within this region of nonuniform

convergence involve fast transients or the so called '"boundary layer

phenomena." Thus, such singularly perturbed systems (8 1 are said to possess

an inherent two-time-scale property characterized by a steady state or "outer

solution" which is defined by the regions of uniform convergence of (3.2),

and the boundary layer or "inner solution" where a stretched time variable is

usually introduced in order to achieve asymptotic converzence on tiie total ti.e

interval. In the linear case such systems take the form

-- - - - -
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y -Ay+Bz y(O) -Yo

(3.3)

il- Cy+Dz z(O) - z

Much work has been done to exploit the multiple time scale

property of (3.3) when designing regulators, pole placement, reduced order

modeling, etc. [3,7,40]. As a result, for a system which is known to

have fast and slow phenomena, the systems engineer is motivated to permute

the state in order to attain the above structure and take advantage of these

decomposition techniques. It is the purpose of this chapter to use multiple

time scale asymptotic expansions to obtain a "steady state" and "boundary

layer" decomposition in (3.3) and show how this decomposition compares to the

eigenspace decompositions of Chapter 2.

In Section 3.2 we obtain power series representations of our dichotomic

transformation matrices P and P.

In Section 3.3 we derive important relationships between various

fundamental sets of solutions to (3.3) and any system satisfying (2.32).

These fundamental sets are based on our reduced order subsystem matrices and

the dichotomic transformation matrices P, P, Q, and Q.

In Section 3.4 we use Vasil'eva's method of matched asymptotic

expansions to obtain the "boundary layer" and "steady state" components of

the solution vectors y(t) and z(t). It is shown that this decomposition is

equivalent to the eigenspace decompositions of Chapter 2 by using one of the

fundamental solution sets established in Section 3.3.

Section 3.5 discusses some computational simplifications to the

dominant left and right eigenspace iterations based on system (3.3). The
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simplifications involve eliminating the necessity to take an inverse at

every iteration.

Finally, in Section 3.6 we discuss an important application of

these techniques, namely, reduced order control law design.

u 3.2. Series Solutions to Riccati Iterations

For proper spectral decomposition and dimensions m and n in (2.1),

it was shown in Section 2.2 of Chapter 2, that the following matrix

* recursion equation for finding the dominant left eigenspace of (2.1)

Pk+l --P k (D+P kB) 1  (DPk-C+PkBPk -PkA) (3.4)

P = DI C

will converge to the dichotomic solution of

R(P) = DP-C+PBP-PA = 0, (3.5)

When (2.1) is in the form of a singularly perturbed model, (3.4) and (3.5)

become

Pk+l -- Pk (D +U PkB) • (DPk -C +uPkBPk -uPkA) (3.6)

and

R(P) - DP -C + -PBP - LPA = 0 (3.7)

respectively. Approximate solutions to (3.7) have been used in [6,7,26] to

construct near optimal control laws for singularly perturbed systems.

In this section we construct an asymptotic approximation (to N terTrs)

of the matrix function P( -) as -0 with respect to the asymptotic iequence

*1
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S k. Tbus, we seek a solution to (3.7) of the form

P(J.) PO + hpP +... (3.8)

I Substituting (3.8) into (3.7) and matching separately like powers of 11 to zero

we obtain

o

DP -C-0 (3.9)

DP +PBP° -P°A - 0 (3.10)

"N-lD +. pN-l-jiBp PN- A  0 (3.11)

J=o

Hence, each term in the series (3.8) is uniquely defined as follows:

P 0 D" 1 C S (3.12)

P =D PBP +D P°A

N .- l NilN-1
=-D j P N-lJNPJ + D'LP' a (3.13)

the asymptotic correctness of this series is obvious and we thus write (3.8) in

the form

P(6) o JpJp +0( 4JN+ ) (3.14)

or using standard notation

?(p) juo PJ (3.13)

One question we might ask is how do the iterations of (3.6) relate

to the individual terms in the series (3.14). After considerable algebra,

it is possible to show that
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EpiN~l (3.16)

for N 0, 1, .....

This is to be expected, since (3.6) converges to the dichotomic s

solution of (3.7) which, due to the uniqueness of (3.14) with respect to the

asymptotic sequence { k, must have this asymptotic expansion.

one area of research in the use of asymptotic expansions that has

received little attention is nonlinear difference equations. If we interpret

(3.6) with Po=D- C as an initial value problem for a matrix system of nonlinear

difference equations, we can construct an asymptotic series solution to (3.6)

of the form

0+a 0 + .... (3.17)Pk k P k

Note that such an expansion converges as 0-0 uniformly in k and thus defines

a regular perturbation problem [8].

Expressing (3.6) in a more convienient form

(D +UPkB)Pk+l C +PA (3.6:-k)

tie now substitute in the series (3.17) and obtain

[(D+u.(P +4PI + .... )B)(P 0  + 1  + .... )

k k k + l )A

= C + (P0 +  .. ) .

Equating like powers of - we obtain the so called "equations

of tle variations" [131.

I
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0

DPk+l c (3.19)

1 0 0 0
DPk+l + PBPI (3.20)

N- IIDPN + E PFL, 3jBP< P A . (.k+l k k+l (3.2)j=0

-I

Since D exists, we can solve (3.19) as

- 0  D 1C-+l (3.22)

and since our matching condition implies

o D-C (3.23)
o

N
P 0 0, N>0

ifo

The solution to (3.22) is thus,

P0  D C Vk 0
* Pk

Likewise, the solution to (3.20) is found from

1 -1 o o oP -D PBP + D P.
k+l k k,+..

0 0 p

However, since P0 = P Vk z 0
Pk-l k

P. =- D- IP03. 0 + D'?°k = constant matri:x

-hus, . 0 : =

D .oSP D P.A Yk = . (3.24)
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Continuing in this manner, the equilibrium solution for the Nth

variation is attained after N iterations an is of the form.

PN _-1 Z ,N--BPi + D" PN1A t3.25)
k j=0 k k k

which is equivalent to (3.13) Vk 2N. While it is clear that (3.17) asympto-

I tically solves (3.6) for any finite time interval, general stabilicy and

asymptotic correctness results for discrete time perturbation problems

remains an open research area.

In a completely analogous manner, the series solution 
for the

equilibrium of the dominant right eigenspa~ce iterations

Pk+l = Pk + (,B+ wAPk- PkD PkC ) k- (3.26)

^ -1
P = BD

0

has the form

+ . .+ (3.27)K- ..
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where
0hr= 0 (3.28)

= BD- (3.29)

N-i N CP)D1 +A D-1 (3.30)

j=1

Thus,
=() - z JpJ + 0(NI ) . (3.31)

j=0

The series solutions (3.14) and (3.31) will be of importance in Section

3.4 when we obtain a two-time-scale asymptotic series solution to (3.3).

3.3. Fundamental Sets of Solutions

In this section we develop some basic properties relating the

dichotomic dominant left and right eigenspace transformations of Chapter 2.

The need for these properties will become apparent in the next section.

One of the basic properties of linear homogeneous systems of

differential equations of the form

x = Fx (3.32)

is that a fundamental matrix ['l4 is of the for-n

Eor a given initia 'aLue problem x't x, , - , n

o (3.32) for t t is uniquely _iven byo
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x(t) X(t)X(t )1 x (3.34)

or when using (3.33)

F(t-t )
x(t) - •x

Another property of the fundamental matrix (3.33) is that

given any nonsingular matrix M,

Y(t) -Ft M (3.35)

is also a fundamental matrix.

For system (2.1) satisfying condition (2.32) we have

established transformation matrices P, Q, P, and-Q such that

A B I :--B
A B: I Q 'A-BP 0 I-QP -Q

= '(3.36)

C D -P I-PQi 0 D+PB P I

A B I-PQ P A-PC 0 1 -
(3.37)

C D -Q I 0 D+CPj Q I-QP

Thus,

A B ~ t:

C D I Q (A-BP)t 0 I-QP -Q

e - (3.38)
e-P I -PQ 0 e (PBt P 1 3I8

is a fundamental matrix for (2.1).

-hus, by (3.35), so is
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t e (A-BP)t 0

e = (3.39)
(D+PB) t

-P I-Q -P I -PQ 0 e

U or, the columns of

F i1
(A-BP)t (D+PB)te Qe

- X(t) f  
(3.40)

-pe(ABP)t (IPQ)e (D+PB)t

form a fundamental set for the system (2.1). Likewise, using a similar

argument for (3.37), the columns of

X(t) = * . (3.41)
.(- (A-'C) t e(D ,4CP) t

NTow, by the dichotomic property of the transformations, there

exist nonsingular matrices TI, T2, T and T such that
213 4

T (A-BP)Tt = '1  (3.42)

-1
T, (D+PB)T, = A (3.43)

2

:3 3APcT '13.4

7, "(D-CP):" =
4' 4

'vhere .. i is the dominant eigenvalue matrix and is the ei;envalue

matrix consisting of the rest of the spectrum of (2.1).

V
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Using (3.42), (3.43), (3.44), and (3.45) in (3.36) and (3.37)

gives

A B [(PQ) T PT FA 0 FT 1  -T

• = I (3.46)
C D L QT1  T2  A T2 Q T2

3  QT4  A1 3A

= K ' (3.47)

Lc P"3  (I-PQ)T4  O 2o . T4 P T;

which, by definition identifies

-

(I-PQ)T 1  PT21 T3  T

1 3  QT4  (3.48)

-QTI  T) -PT 3  (1-PQ)T 4

as eigenvector matrices for (2.1).

While the magnitudes of eigenvectors are not unique, their

directions are. Thus,

iT T2 A2t 3 At
ie 2 e (3.49)

2  T3

also serve as a fundamental set for (2.1), or in matrix form

Stt
T3a " e (3.50)

' 1 1 
,t

-PT e T2e
3.,



.I  However, postmultiplying (3.50) by the nonsingular matrix

-1
T 0

3 -1 (3.51)

0 T2

gives

(A-BP)t De(DP) t
- e Pe(Pt

Y(t) = (3.52)

pe(A-BP)t e (D-f P) t

Also, by a similar argument on (3.46) and (3.47),

^ ̂ (A-PC)t Qe (D+PB)t
[I Yr) = (3.52)

.I e (AIk)t (I-PQ)e (D+PB)t

also qualifies as a fundamantal matrix for (2.1).

Thus, in this section we have established the existence of

Cour fundamental matrices for (2.1) based on the dichotomic transformation

matrices P, Q, P and Q. This flexibility will prove valuable in the next

section concerning asymptotic expansions of our singularly perturbed

model (3.3).
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3.4. Solution by Asymptotic Expansion Using the Method of Vasil'eva

Using the results established in the first two sections of this

chapter, we wiil attempt to solve (3.3) using asymptotic expansion techniques.

In (13], the method of matched asymptotic expansions was proposed

as a method of obtaining asymptotic solutions to the general nonlinear

singularly perturbed initial value problem

S= f(zyt) y(O) = Ydt 0
(3.54)

dz= F(z,y,t) z(O) = z
dt o

To use this method, it is assumed that the root z :)(y,t)

of the equation

F(y,z,t) = 0 (3.55)

is stable in the first approximation or specifically, the real parts

of the roots of the characteristic equation

DET( - X) (3.56)

z=Q(y,t)

be negative in D, where D is a closed bounded domain in the variables
6

t < t ! t , z. < KI, y' < K., and 0 ' 4 < . Under this assumption,

the method can be applied to (3.3) as clearly carried out in [13].

Tn our case (3.54) reduces to6

d- = Av + Bz :(O) = v
dt 

0
(3.57)

= Cy + Dz z(O) =
dt o
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and the assumption becomes

Re(%i) < 0 VXI c(D) i-1, m

with this assumption satisfied, we can proceed with the asymptotic solution

method proposed by Vasil'eva.

A solution to (3.57) is sought of the form

y - y +rr (3.58)y

z - z + i' (3.59)z

where

Y YO(t) + Yl.(t)+ .......... (3.60)

denotes a formal power series in ti whose coefficients depend on t,

and

- i y('r) + (,ly(!) . .......... (3.61)

y 0

Denotes a formal power series in whose coefficients depend on r= t/.

Substitution of (3.60) , (3.61) and the analogous expansions for z

into (3.57) yields

dV + T y = L.A(y+ , y) + &B(-z+-z)
dt dr

(3.62)

dz d
dt dr :z = C(y+,y) + D(z+ z) •

Equating the coefficients of equal powers of , those depending on t and

those depending on r being treated separately, we arrive at the foilowing

e'quations for the variations.
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Zeroth order,

Cy 0(t) + Dz 0(t) =0 (3.63)

d -fl'z() =Cw y(r) +-Dr z() (3.64)

dy (t)
0t-- Ay 0(t) + Bz O(t) (3.65)

dt

'r y (r) 0 0. (3.66)

First order:

dzt) Cy I(t) + Dz (t) (.7

dr CTy) + Di-rz(-) (3.68)

dy1t) Ay (t) + Bz (t) (3.69)

d-yri Ar 0y(r) + B.Z(r) (3.70)

kth order

dzk (t)
dtI Cyk(t) + Dz (t) (3.71)

d k C-) G kY( ) + D -.z() (3* 72)

gdy k (t) -

Av (t) + z(.3
dt 'kzkkt 3
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d Ark-y( ) + Brk-lz( )" (3.74)

Since we are considering the initial value problem, the

matching conditions become

z(O) + Z (0) - z°  (3.75)
o

T Y(O) + y (0) = yO (3.76)
0 0

and for k 1

r. z(O) +zk() 0 (3.77)

+ (3. 78)
Tko)+ Yk(O) = 0 (.8

and, due to our stability assumption,

= = 0 k Z 0. (3.79)

g Solutions of this type are referred to as "inner" and "outer",

"fast" and "slow", or "steady state" and "boundary layer" depending on

the author.

Our purpose here is to show that the series

y =Y+
-v (3.80)

z = z -+ -

z

are equivalent to the solution of (3.3) obtained using the 2undamental

r.Arix (3.32) . in other words,
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-q F'Sri = e (ABP)t (0) (3.81)

Z L

The approach here is to show thatyslow and zslow (2.73) and

(2.74) found using dominant left eigenspace iterations are equivalent to

and z respectively in (3.80). We then show that Yfast and zfast of (2.84)

and (2.85) found using the dominant right eigenspace iterations are equi-

valent to w and w respectively, in (3.80). This is the purpose of usingy z

fundamental matrix (3.52) since it expresses the solution in terms of these

components. Other fundamental matrices involve the Lyapunov solutions Q

and Q that possess complex series expansions which we want to avoid.

First, we seek an asymptotic solution to yslow of the form

x(t) = x (t) + Hxl(t) + .......... (3.83)

and a solution of z in the form

-Px(t) = "P (t) - "(P 1x
+ PoXl) ..........

where x(t) is the transformation variable of (2.70). When (3.3) is

used as the system -nodel

x I A-P(u ) 0 x

= (3.84)

_ 0 D_ + BP(5
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3J Substituting in the formal power series (3.83) and (3.7)

into (3.84) and equating like powers of u, we obtain the following

equations of the variations

xo (A-BPo)x (3.85)

" (A-BP )x BP1x (3.86)

k-1
X (A BPo)ykB r P " " (3.87)
k 0 k j=O k-jj

We will now show that the differential equations necessary to

solve for yk' k ! 0 are equivalent to (3.87) Vk. The equivalence of

z and (-Px) is a byproduct of the derivation for the equivaence of v

and xk.

From (3.63) and (3.65)

z =-D C7
0 "0

dv
t2 = (A-BP ) (3.89)

:Tow, from (3.67) and (3.69)

ZI = -Po +D- _Od2

o d

p - - C
o' dt

-1v -D -C(A-BD ,.}v

- P
0' L [0
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dyi 
(391= (A-BPo)yI - BPIy (3.91)

and thus, for (3.71) and (3.73)

1dzk-
_Z =.Poyk +D "I dk-I

Zkk Adt

dz " Pd P dyk"2 dy (3.92)

dt 0 dt 1 cit Pk-i ct

z k = A

- IP A + D- P BP
=0 00

D' Pk iA+D "  P.BPk
- j=0 j  k1-j

=" Pok" Pl~k-i " " ' ' "  Pkv

k
= - k p Y - (3.93)

dyk  k- i
dt- (A-BPo)Yk - B 7 Pk- j  (3.94)

j=O

which is equivalent to (3.87) Vk. Plus, it is obvious from (3.93) "that

We now consider the fast components.

Using the dominant right eigenspace iterations, the singularly

perturbed model (3.3) is transformed into

I l m - m
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x A-PO)C 0 x

(3.95)

0 0
where X0 YO 0 ~

Xo = QYo + (I-QP)zo.
o0

P is obtained from (2.26) and Q is then obtained from (2.78).

The dichotomic nature of our fast and slow components led us to identify

fast and slow components of y and z as

Yslow = (I=)x Yfast P)A

z = -Ox ZfastZ~slow 6. fast

The differential equation for the fast state vector is

DCP
= W. (3.96)

Let - t/,-, then (3.96) becomes

dj, - (DC ) (T) . (3.97)

tie now seek an asymptotic solution to Zfast of the form

S= ' (-  + -.vl(') ...... (3.98)

and a solution to of the formf as t

P (T1) = P 0, (=) + u.(P u (-) + P+())00 Pol PIo ') ...
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(Substituting the formal power series (3.98) and (3.27) into (3.97)

and equating like powers of u, we obtain the following equations of

the variations

d~u ('r)
dT DW 0r) (3.99)

d'r o(r

d'r 1 + CPl1o (3.100)

k-I
=Dwk+C Pkjj (3.101)

We will now show that the differential equations necessary

to solve for 7kz(T), k > 0 are equivalent to (3.101) Yk. The equivalence

of-ky(-) and (P°")k is a byproduct of this derivation.

From (3.66) and (3.79)

y 0. (3.102)

Thus,- = D- z. (3103)

From (3.70)

d- ()
=A- v + S *. (3.104)

d- o" 0

.((= ) [A(c) + B -(:)]d-. (3.1,35)
=.~ "j"

0
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3 To establish *ly(O), from (3.79)

0 0-
1 " Y(O) + (A 0A-Y(C + Br Oz (CO (3.106)

0

K Thus,

1 y(T) -. [ATToy(C) + Br° z(a)da (3.107)
1 0 0

Since r y(z) - 0
o

'rly( r) = - J Br, z(c)dc (3.108)
0

BD dc
d-

o oB- Oz(- o()

= BD z(-) = P-oZ(-) (3.109)
0o

and as a result

d1 z(-)

d-r Dr Z(,) + CP I-o('). (3.110)

Arially, for the k variation

- [A-kV(-) + BTk!z(J)Id- (3.111)

T

d-k ( I )d
-i __ _ __ _d- z BD:d

dc

- (A -SD,d
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(A-BD- C)P2 .r (a)da - . -f (A-BD 1C)Pk-rr z()da (3.112)

. . , .

using

-1 dT k-iZ(r) -1k-2
- (T ) D Dd -D. c E (-zIr) (3.113)

dk-i-2 j

dr k- z(a) Dd'd ) (a)
d -k- d k~z j (.

do aoP J do-

TTA droz (a)

A AP^ (r P2rk-2z P-z (T)
SPlT k- 1z(r) + 2 7k-2 ) + o + Pk 0 (3.114)

U k-i
= ( Pk.zr).
j =0 k-j j~"

d T- z ( ) k-i ( 3A1 6
j=0

Wvhich is equivalent to (3.101). Yk 0. Also, from (3.115),

Ik= (P)k k 0. (3.117)

Thus, we have shown that y satisfies

dy
= (A - BP)y '3.19)

* ~ and tha

- " = (D P,-- .. 19
Sr
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likewise

n Pr z ( ) (3.120)

- -P~o Ct) "

0 0

Thus

y(t) - Y (t) + n (r)0 y.

M e(A-BP)ty (0) +pe(D+-)CPr (0) (3.121)

Z(t) - i (t) + It (T)
0 z

= -Pe(A-BP)t- (0) +e(D+CP)r (0) (3.122).0 z

e (A-P)t(Q))
I[ (t) 1(A-BP)t e ( D + C ) T  

0(0) (3.122)

The matching conditions (3.75)-(3.80) thus reduce to

Yo y(O) + '-y(O)

1 (3.124)

z Z(O) + -z(0).

iowevzer, from (3.120)

Y - (0) + ?- (0) (3.125)

z

z =- Py(O) + riz(0) (3.126)

or

-p [ -(0)zI P1 (O)1

Thus,
ry(O) r

" 0 ( 3 .1 2 5 )
( ) -P I z IL - L J
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which, together with (3.123), uniquely defines the asymptotic series solution

to (3.3) in terms of fundamental matrix (3.52).

In conclusion, given the initial value problem (3.3) that

satisfies (2.32), the presence of the singular perturbation parameter 4

suggests seeking a series solution in two time scales. Vasil'eva's method

of matched asymptotic expansions is used for decomposing the solution vector

q of (3.3) into fast and slow series components that are individually easier

to solve than the original higher order system. The attractive feature

of series solutions is that no state transformation is necessary. The series

terms for the actual states are computed as they are needed. In the eigen-

space iterations, this is not true. Transformed fast and slow states are

found, solved, and the actual states attained through'an inverse

transformation. From a computational point of view this method has to be

preferred since only two reduced order systems of differential equations are

solved in attaining the high order solution. In the series method, two

reduced order systems of differential equations are solved for every term

in the series. Thus, it is practical only when the number of terms in the

series required is small. In this section we have shown that the separation

of time scales attained in asymptotic series solution is equivalent to the

dominant eigenspace decompositions of Chapter 2, in that the convergence of

both methods is dependent on the existence of a dichotomic solution to the

Riccati equations (2.19) and (2.26). Thus, for a given state, the "fast"

and "slow" components of that state obtained using either decomposition

alzorithm will be the same.
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3.5. Simplified Iterative Schemes

One of the computational drawbacks of the dominant left and right

eigenspace iterations is the computation of the inverses

(D+ PkB)-' (3.129)

(D - CP ) (3.130)

at every iteration.

Looking at the left eigenspace case, the iterative matrix recursion

is

Pk+l (D+PkB) -(C+PkA) (3.131)

which can be expressed as

DP -PBP +C+P k
A .  (3.132)

k+l k k+l k

If this is approximated by

DP k+ k -PBPk + C+PkA

Pk+l D (C+PkA- PRBPk) "  (3.133)

Then we will have eliminated the need for the inverse in (3.131) at ever:

iceration.

Likewise, looking at the right eigenspace case, the iterative

matrix recursion is

Pk+1 - (B+AP )(D+CP )-( 3.139)
k1k k

which can be expressed as

C D " C B+AP,. 3. 133)k-1 -k-1 k
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If this is approximated by

Pk+lD -PCP +B+AP
kl k k k

(3.136)

Pk+l _ k C k ++AP k)D1

we will have again eliminated the need for taking the inverse in (3.134) at

every iteration. [10] has used a contraction mapping argument to develop

conditions under which (3.133) will converge to the dichotomic Riccati

solution. This methodology can easily be extended to (3.136). When the

* conditions of [10] are satisfied, (3.133) and (3.136) are computationally

superior to (3.131) and (3.134). Unfortunately, the conditions of [4] are

somewhat conservative and are not satisfied by many systems which we know

can be decomposed using (3.131) and (3.134).

3.6. Partial and Full Pole Placement

1here are many applications using the techniques developed in

Chapters 2 and 3. They include robust designs, reduced order regulator

designs, and reduced order modeling to only mention a few. In this section

we will show how the time scale decomposition techni.ques can be used to imple-

ment partial or full pole placement design.

We will now be considering the completely state controllable

svstem

F~ A B] + G' P.ueR . (3.137)
C _ zc DI
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If the open loop eigenvalues satisfy (2.32), then we can apply

transformation (2.17) which transforms (3.137) into

+BP u (3.138)
D+PB YIF H+PG(.

where P is obtained using either (3.131) or (3.133). The transformation

involved here can be written as

i= ](3.139)
P I-

which possesses the explicit inverse

Y 1 01 .
(3.140)

_Z1 _P I-n

Observe now that the pair (D+PB, H+PG) spans only the "fast" controllable

subspace. Let D=D+PB and H* =H+PG and design a feedback gain F such that

(D* + H*F)

has m desired poles.

The control is of the form

U = Fn (3.141)

= F(Py+z)

= [FP : F](

and the resulting closed-loop system has n eigenvalues according to

c (A-BP) (3.143)

and m eigenvalues according to

7(D*+ H*F). (3.144)
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Now apply transfo-mation (2.24) to (3.137). This gives

C- D+C_ z H

where P is obtained using either (3.134) or (3.136). The transformation

involved here can be written as

[2= -li;L(3.145)
which has the explicit inverse

(3.146)

Observe now that the pair (A-PC, G-P) spans only the "slow" controllable

subspace. Let A*=A-PC and G*=G-PH and design a feedback F such that

(A* + G*F)

has n desired poles.

The control is of the form

u - FZ (3.147)

- F(y-Pz)

= [F -FP]CI~ (3.148)

and the resulting closed loop system has n eigenvalues if

a(A* + GF)

and -n eigenvalues of

"(D+ C ).
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In general, both slow and fast modes may be designed for. In this case a

general two-state design procedure may be implemented. Assume we have block

* diagonalized (3.137) as done in Section 2.3.

[I + U. (3.149)
D D* H*_

We arbitrarily chose to design for the slow subsystem first. Thus, we chose

Pa an F such that
s

a (A* + G*F )5

has n desired "slow" eigenvalues. Letting

u u +uf

where nowr Us =FsX

the partially closed loop system looks like

[A*+G*F 0 x -G*

H*F D* i H (3.150)

Now, let

v w + Sx

which transforms (3.150) into

[] - A* + G*F 0 [x F G* ( )•~~ [ Hu_. (3.151)1 H*F + S(A*+G*F )-D*S D .WJ H* SG* I
5 S --

We Dick S such that

H*F 4 S(A*+GF )-D*S = 0. (3.152)
5 s

This Lvapunov type equation has a unique solution if

- (D*) _-7 (A"' - GF ) (3.15 3)
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and thus can be solved algebraically (32]. If

minla(D*)I > maxla(A*+*r )I. (3.154)

Then the iterative scheme (2.80) may be used to solve (3.152). With this S, the

pair (D*, H*+SG*) now spans only the"fas' controllable subspace, and we can

design a feedback gain Ff such that

o(D*+ (H*+SG*)F f)

has m desired eigenvalues.

Thus, the composite control is
0

U F sx + Ffv

= Gxs + Ff(w+Sx)

= (Fs + FfS)x + Ffw

" [(F +FfS):Ff[x]w  (3.155)

and using either transformation (2.72) or (2.83), (3.155) can be expressed in

terms of our original state variables. This control places n eigenvalues of

a(A*+G*F) (3.156)
s

and m eigenvalues of

* a(D*+ (H*+ SG*)Ff). (3.157)

This technique has been applied to singularly perturbed systems [42] where it

is shown to be a generalization to results obtained in [7,26,40]. This

technique is also applicable to discrete time models as shown in [43]. in this

case, the dominant eigenvalues are part of the "slow" spectrum.
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CHAPTER 4

SINGULAR PERTURBATION IDDELING OF MARKOV CHAINS

4., Introduction

The previous two chapters have unified and extended many results on

the control and analysis of deterministic two-time-scale systems. For stochas-

tic systems modeled as Markov chains we can extend the theory of time scale

decomposition to these probabilistic models where now "slow" and "fast" eigen-

modes correspond to "weak" and "strong" transition probabilities.

Markov chain models are well known in the analysis and control of

stochastic systems [14,15,21,44]. Until recently, however, this analysis was

limited to simple systems due to the tremendous dimensionality requirements

of most Markov models. Recent applications, such as management of hydrodams

[22,25] and queueing network models of computer systems [21,45,46], have

accentuated the need for reduced order approximations of large scale Markov

chains. in this regard particularly promising is a perturbational decomposi-

tion-aggregation method of Pervozvanski, Smirnov and Gaitsgori [23,24,47,48],

and Delebecque and Quadrat (25,49]. The method assumes that the groups of

strongly interacting states are known and treats the weak interactions between

these groups as perturbations. The result is a short-term decomposition. Over

a longer period the weak interactions become significant, while each group of strong-

ly coupled states can be replaced by an aggregate state. A long-term aggre-

gate model is thus obtained. It is the purpose of this chapter to show how

such weakly coupled Markov processes can be modeled as a q4-igularly perturbed

system. This enables us to apply the decomposit i )n techniques of chpaters 2

and 3.
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In Section 4.2 we introduce the two-time-scale Markov chain. Slow

and fast components of the chain are identified and used to construct the

singularly perturbed model.

In Section 4.3, a grouping algorithm [34] to used to show how the

states of an arbitrary Markov chain can be ordered so as to exhibit the two-

time-scale property.

Finally, in Section 4.4, a two-time-scale asymptotic expansion of

the steady state probability distributioL is constructed using the singularly

perturbed model. An example is then given to show how the series solutions

can be used to efficiently calculate the invariant probability measure of a

large queueing network.

4.2. Singular Perturbation Modeling

In this section we introduce the two-time-scale Markov chain and

show how it can be put into standard singularly perturbed form.

Consider the n-state Markov chain

d)= p(T) (A + c B) (4.1)
• d'r

where p(T) is the n-dimensional row vector of probabilities pi(T) to be in

state i at time T. Hence,
I

n

i-I jJT) 1 T kO. (4.2)

A and B are both n-dimensional Markov generators and A has the form
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A1 0

A - 2 (4.3)

0 AN

where A., J-1,...,N are n dimensional Markov generators.

Thus, in (4.1) N groups of strongly interacting states have been
N

identified. Group j consists of n j states and E n1 =n. The weak interactions

between states in different groups are modeled as multiples of a small posi-

tive scalar s. We assume throughout the thesis that for 0 <eO"€ the process

(4.1) has a single ergodic class with unique stationary probability distribu-

tion p defined by

0 - p(A+eB) (4.4)

Furthermore, let each of the N generators A. define a Markov process with a

single ergodic class. This implies that each A. has one zero eigenvalue.

The corresponding right eigenvector t. is the n.-dimensional column made of

ones. The left eigenvector vj is the n .-dimensional row of stationary prob-

abilities for the states in the j-th group when e-O in (4.4). The matrix form

of A.t. -0, v.A m0, and v.t. ai, j =3,...,N, is.3. .3JJ .. 3 I

AT-0, VA-0, VT-IN (4.5)

0 0 ... 0 VI 0 0 0

0 t 2 0 ... 0 V 0 v, 0 .. 0

:- , 0 v 0 (4.6)

0 0 0 t 0 0 ... 0 V
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C where I is the NxN identity, the j-th row of T is made of na-dimensional

columns and the j-th colun of V is made of n.-dimensional rows, that is T

is nxN and 7 is Nxn. The influence of weak interactions sB in (4.1) will

become significant after a long period of time T. Hence T-scale is called

"fast time." To see the influence of 9 "sooner" we introduce the "slow time"

t= e. If, for example, T is in weeks and C-= , then t is in years. In

It-scale model (4.1) becomes

p(t)- p(t)(z + B) (4.7)

* d

where the dot denotes d. Initially p(t) will rapidly approach the null-space

of AT as if the N groups were separated from each other. After that,pB is no
A

longer negligible with respect to p j. This behavior is a characteristic of

singularly perturbed systems (3,13,35]. As in [35] our goal is to transform

(4.7) into a standard singularly perturbed form which makes the slow and fast

parts of p(t) more explicit. For N slow variables we take the elements 1j of

the row

pT (4.8)

0 because is the probability of the process (4.7) tobe in group j. Since the
-J

transitions between the groups are slow, IL will change slowly. After the

i i
fast transient is over, probability p. is approximated by 1iv., where v. is theJ

scaticnary probability for the process to be in state i, once it is in group i.

Thus the difference Y. =P - Tpjv. is the fast part of pi. Of n such differences,

n-N are independent and are defined by

YW = p--,V, WT=. (4.9)
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LI W is an (n-N)xn block-diagqnal matrix of the form

"-1

w2  0

3  (4.10)

0

wN

where each wj is an (-l)x Ti .matrix of the form

0 ............. 0 0 -1

0 1 ............. 0 0 -1

w: (4.11)

0 0 1 0 -1

' o ............ 0 1 -1

This defines the transformation

p = [7',Y] I[ (4.12)

to perform the inverse transformation, we define the a x (n-N) block diagonal

matrix S such that

WS - InN, VS 0 0. (4.13)

" ives the explicit inverse of (4.12.) as

[-,,Y] = p(r,si (4.14)

-.he form
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Si

S2  0

s- 0 • (4.15)

SN 

i

and each S. is an nj x(n - 1) matrix of the formqJ -J-
1 2 ... n j-1

1-vj i -v ....... -v.

1 2 nj-1-v. 1-v -V.

S.. . (4.16)

j-

1 2 nj-i-V -v -V._ 3 - .3

using (4.14) and (4.12), (4.7) can now be transformed into a standard singular

perturbation form

= VBT + YWBT

(4.17)
= WVBS + YW(A+ CB)S

whose properties are well known (3,12]. The crucial stability condition on

W(A+cB)S is satisfied by the fact that the j-th block of the block diagonal

m.atrix WAS is Aj deflated for the zero eigenvalue. Thus, from the basic

assumptions on (4.1), Re %I(WAS) <0, i-I,...,n-N. Assuming that -IA-0 and

substituting

Y -c-7BS(TAS) 1 (4.18)
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from (4.17) an c-corrected slow. model is obtained

- I(VBT -cVBS(WAS)WBT) -(4.19)

which for e - 0 reduces to the aggregate model obtained in [23]. Note that the

inverse in the correction term is "decentralized," and consists of N inverses

of smaller diagonal blocks. From (4.18) we see that the slow part of Y is only

0(c). If we express (4.17) in the fast time scale T -t/., or, equivalently,

if we apply transformation (4.12) to (4.1), we would obtain

d7, - 0(c), L YWAS + 0(c). (4.20)

dT dr

Thus, in the fast time scale as c-0, the slow variable ij tends to a constant

and the system matrix for fast variable Y is WAS. In this manner two-time

scale asymptotic expansions for *-., Y will be constructed in section 4.4. Note

that in the fast time T, to 0(C), the interactions between groups are neglected.

In the slow time t this is not true. This points out the necessity of posingK
the problem in the slow time scale if we are to use perturbation methods in

the analysis and control of Markov chains on the infinite horizon.

Let us now consider the discrete time model

A
p(k+l) - p(k)P - p(k)(& + I + B) (4.21)

where P is the probability transition matrix and A and B are generators. As

in (4.7), the strong interactions appear as multiples of - , that is. (4.21)

is expressed in the slow time scale. The transformation (4.12) results in

,(k+l) - 7,(k) (I + VBT) + Y(k)WBT

(4.22)
Y(k+l) = 7q(k)VBS + Y(k)W±j + I - B)S.
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C Properties of this type of discrete time models are discussed in [43,50,51].

Note that the same model is obtained from (4.17) if ., " are replaced

1(k+l) - 11(k), Y(k+l) - Y(k),

that is for the step size 1. The slow model analogous to (4.19) is obtained by

neglecting e[Y(k+l) -Y(k)].U
Throughout the remainder of this thesis singularly perturbed models

(4.17) and (4.22) will be used extensively. It is important to realize that

by just finding the steady state probabilities v., j-l,...,N, we can construct

the transformations (4.12) and (4.14). Thus, these singularly perturbed models

are obtained with little computational burden once the structure of (4.1) is

identified. The problem of permuting the states of an arbitrary generator to

exhibit this form is the topic of the next section.

4.3. Ordering of States

The preceding section assumes, as do the earlier references (23-25,

47-491, that the N groups of strongly interacting states are known and the

* generatorof theprocess (4.1) is of the form G=A+eB, where A is block-diagonal

and eB is small. This situation, convenient for an asymptotic analysis, is

seldom met in reality. The ability to identify g:oups of strongly coupled

states given an arbitrary generator is an important modeling task. In this

section we address this task. Our main tool is a state "grouping" algorithm.

developed in (34] for power system matrices which we apply here to Markov

generators.

Consider the generator
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I K05  .05 -
.05 -.46 .05 .36

.05 -.46 .05 .36

.05 -. 41 .36

.2 -. 25 .05

.2 .05 -.66 .05 .36

.2 .05 -. 61 .36

.2 -. 25 .05

.2 .05 -. 61 .36

.2 -. 2 _

(4.23)

This generator describes the transitions between the states in a queueing network

of a computer system (21,46] consisting of a filing device D, a secondary

memory m4, and a processor C. Assuming that there are three users, the states

X,...,Xio are defined inTable4. 1 whose entries are the numbers of jobs inD, C,

and X queues.

x~i x3 • i x Q. x_. '3
D r! ' z ; a4 ?; ::.

II I

C 0 2 3 0 1 2 0 0

N' 0 C0 0 V i z 2 3

Table 4.1. States of Queueing Network Model

The zain difficulty in determining whether a state interacts weakly

with a group of states is that its interactions with each state in the group
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can be small, but the sum of these interactions can be significant enough to

be considered strong. In other words, in practice c is not infinitesimal and,

if e -0.1 is considered as weak, 66 .s strong. Thus, already for (4.23), and

certainly for more complex forms of G, a systematic procedure is required to

determine the strongly interacting states. Such a procedure is Avramovic's

grouping algorithm.

The grouping algorithm is based on the following property of a process

with as yet unknown groups of strongly interacting states: If there are N

such groups, then matrix G will have N-1 small eigenvalues which are clustered

near its zero eigenvalue. Let the columns of an nxN matrix M be the right

eigenvector of G for the N smallest eigenvaltxes, including %-0. Each row of

M corresponds to one of the n states. We observe that T in (4.6) is the limit-

ing form of M when interactions are neglected and the states are grouped.

Note that states in the same group have identical rows in T while states not

in the same group have rows in T that are perpendicular to one another. By

continuity we expect that the corresponding rows in M should be "nearly identical"

and hence close to being linearly dependent. Instead of investigating "nearly

identical" rows of X, Avramovic's algorithm does the opposite: it starts by

determining N rows of N which are as linearly independent as possible. In the I
algorithm, these rows are found by a simple Gaussian elimination with full

pivoting. The corresponding N states are called the reference states around

which the remaining n-N states should be grouped. When the N reference rows of

m are found, a permutation r. is performed so that these rows appear as the

first N rows. Thus the NxN matrix ml in
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8L

Mla M - (4.24)LZI2
is nonsingular and a new basis of the same eigenspace is

M1~1 - M1 - . (4.25)

In (28] important properties of matrix L are deduced from the fact that it is

the "dichotomic" solution of the Riccati equation (2.26). A property to be

used here is that the sum of entries in each row of L is i. Thus, if M has

"nearly identical" rows, each row of L will have an entry close to 1, and all

other entries close to 0. The criterion for grouping is simple. A row of L

belongs to the group defined by that reference row which has entry 1 in the

same column in which the examined row of L has its largest entry.

K We now proceed to apply this algorithm to determine four groups of

strongly interacting states in (4.23). The four smallest eigenvalues of G are

0, -0.025, -0.065, -0.107. The eigenvector matrix M and the matrix (4.25) are

as follows:
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X [

1. .32 .84 -. 81 .42- 1. 1 0 0

2. .32 .41 .25 -. 49 5. 0 1 0 0

3. .32 .06 .28 .26 8. 0 0 1 0

4. .32 -. 12 -. 04 .04 10. 0 0 0 1

5. 1 .32 .38 .35 -. 57 2. .08 .92 0 0 .(4.26)

6. 32 .03 .28 .32 3. 0 .17 .83 0

7. 32 -. 14 -. 07 -. 01 4. 0 0 .34 .66

8. .32 -.01 .27 .43 6. 0 .11 .89 0

9. .32 -. 17 -. 13 -. 07 7. 0 0 .26 .74

10. f.32 -. 19 -. 19 -. 16 9. 0 0 .14 .86
. I U_

Note that the rows are Labeled with the index of the state. An excellent

grouping is achieved, because each row of L has one distinctly large entry.

Therefore the groups are L4,7,9,10], (3,6,8), t2,51, tIJ. The peri.itation of

Le the generator (4.23) to this ordering of the states is

.41 .36 1 .05

.2 -.61 ..36 ..05
I

.2 -. 61 .36 .05

.2 -. 2 ' (4.27)
*I

.05 -.46 .36 1 .05

.05 .2 -. 66 .36 1 .05
I

.05 I .2 -. 25 '

.05 1-.46 .36 1 .05 I
.05 1 .2 -. 25 1

------- -0 
05 :_: 05'_
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where the weak coupling is apparent. The physical interpretation of the

grouping is now clear. The aggregate 7 1 (t) is the probability that at time

t there are J-i jobs in the D-queue. This is intuitively clear since the mean

service time of a filing device D is typically much slower than that of second-

ary memory M or processor C. The Y(t) variables describe fast fluctuations

between the C and M while the D-queue is in a given state. The accuracy of the

- approximation using the aggregate matrix

0 2 5 .0 2 5 0 0 f

05 -.073 .023 0
VBT - 1 (4.28)

0 .05 -.068 .018

0 0 .05 -. 05

can be judged from the fact that its eigenvalues 0, -.027, -.071, -.118 are

close (loss than 107 error) to the corresponding eigenvalues of G. With a

correctec model (4.19) they are within 27.
I

4.4. Two-Time-Scale Asymptotic Expansion

One of the applications of the singularly perturbed model (4.17) is

the ability to obtain a two-time-scale asymptotic expansion of the solution

vector p(t). Then "slow" and "fast" components can be solved independently

rather than solving the high order system of "stiff" differential equations.

It is the purpose of this section to construct such an expansion. As time

tends to infinity, the asymptotic series of differential equations will reduced

to algebraic equations which can be used to solve for p in (4.4) in a computa-

tionally attractive manner. The ability to compute p efficiently for large

chains has many applications [461.
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We seek a solution to (4.17) of the form [8,13]

- ,f(t) + L,('r) (4.29)

Y - Y(t) + L. (T) (4.30)

where each term is a power series in e with coefficients depending either on t,

t
for the slow ("outer").series, or on T = , for the fast ("inner") series.
|A

-(t) = 70(t) + el1l(t) + ... (4.31)

L.,(r) - + LL,(Tr) + ,.. (4.32)

Y (t) - %(t) + e.(t) + ... (4.33)

0 1
Ly(T) - t (T) + 6L .() + ... (4.34)

Substituting (4.29) through (4.34) into (4.17) and equating the terms with like

powers in c, separately for t and T series, we obtain, for zeroth order terms
A

o(t) = o(t)VBT (0) 7 n(0) (4.35)

L0(T) - 0 (4.36)

Y. 0(t) = 0 (4.37)0

dt;(T)0

d( (T)WAS L (0) = Y (0) (4.38)

* We see that within O(e) the fast part of " (t) and the slow part of Y(t) are

zero for all t. Furthermore, due to the asymptotic stability of (4.38) the fast

term t, (T) -0 as Tr=- -. For small thi; "boundary layer term" is negligible

* for all t >t, where t is of order -C¢nc. Thus, for t >t p(t) is approximated

within 0(e), by to (t)V.

S
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For first order terms we obtain

tl(t) - T1(t)VBT + Y.I(t)WBT (4.39)

! .

d L (T)WBT (4.40)
d(I

Y1(t) - T 0(t)VBS(WAS)-1 (4.41)

1
dTLj(T) W1 0

- l(T)WAS + (T)WBS (4.42)

11The matching conditions become L(0) -11 (  and L (0)=-Y,(0) By direct

integration of (4.40) we obtain

1 0~
L (T) - L(0) +L aWT .(4.43)

0 Y

Since I,( ) =0,

L-1(T) =-j b (a)WBT da (4.44)
'I T

using (4.38), this becomes

L (T) da (WAS) L WB () (AS
T (4.45)

L (T) (WAS) "WBT

thus at each stage only separate fast and slow differential equations need to be

solved. An important property is that the fast equations are "decentralized"

groups of states due to the fact that WAS is block-diagonal. From (4.35)

:hrough (4.45) we have
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ilt)* (t) + eq. 1 (t) + I- (T)) + 0(15 4.6
(4.46)Y(t) - L(T) + C(Y(t) + L1(')) + 02 1

higher order terms are obtained similarly. The computational advantages of the

eigenspace iterations over the series solutions have been discussed in Chapter

3. However, for an intuitive understanding of how the solution vector decomposes,

the series solutions are more attractive. As t- = , the L-terms vanish and the

equilibrium or steady state distribution p is given as

p ( + C2 2 +...)W (4.47)

where 7i =7i(t) and Y. IYi(t) as t --. The terms in (4.47) are easily computed

from the following sequence of algebraic equations.

N i

; 0VBT 0 iZl, = 1 (4.48)

-j T ",,0 VBS(WAS) l (4.49)

N
.11VBT + f WBT i=0 1i 0 (4.50)

+1

Y k - -('k- lBS + 7k_ YBS) (WAS) (4.51)

N

IkVBT + Y WB - 0 i~~ 0 (4.52)

Note that VBT is an NXN matrix and W.A.Sj is (.j l)x(,'vj-) for j =...,N.

Thus we need only solve N and 71-l,i=l,...,N dimensional systems of linear

equations to obtain a good approximation to p. If we were to solve (4.4)

directly not only can the dimension of A+eB be large, but also the presence of

could result in an ill-conditioned problem. Note that (4.48)-(4.32) are

independent of e.
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p Queueing network models of computer systems are often in the form of

a large markov generator (21,45,461. Performance analysis measures are usually

functions of p. By using (4.48)-(4.52) these performance measures can be

r I efficiently computed on the subsystem and aggregate level. We illustrate this

concept on the model used in [46]. In this paper various iterative techniques

for computing p are compared from a computational point of view. Direct methiods

of solution are not considered due to the large storage requirements. However,

it is acknowledged that the results obtained using direct methods are more

accurate and require substantially less total time than iterative techniques.

The singular perturbation method we have proposed is a hybrid of direct and

iterative methods. Each series term of p is solved directly on a significantly

reduced order basis. However, to i- ave the approximation successive series

terms must be solved (which can be viewed as an iterative process with conver-

k
gence rate e ). We will now compute p using (4.48)-(4.52) for the model in [463.

Thi~s queuei.ng model represents the architecture of a time-shared Multiprograimmed

paged virtual memory computer system. Assuming three jobs in the system, the

Markov generator is of 20th order. Using the asymptotic series solutions (4.47)-

(4.52), P0 .=20 V and p, 1 v + (iv +7 1W) were computed and compared to the actual

* steady state distribution p as follows:
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0.0002493 0.0002483 Fl0.0002493]
0.0004452 0.0004455 0.0004452

0.0007962 0.0007992 0.0007961

0.0014284 0.0014338 0.0014282

0.0002509 0.0002502 0.0002508

0.0004483 0.0004489 i0.0004483
0.0008027 0.0008052 0.0008028

0.0002530 0.0002502 0.0002530

0.0004527 0.0004489 0.0004527

P = 0.0002530 P0  0. 0002502 p1  0.0002530

0.0082679 0.0082697 0.0082677

0.0080455 0.0080753 0.0080451

0.0078604 0.0078856 00,80

0.0082979 0.0082697 10.0082984
0.0080917 0.0080753 0.0080921

0.0082914 0.0082697 0.0082919

I0.1049480 0.1049442 0.1049481.

0.0363037 0.0362f32 0.0363041

0.1048605 0.1049442 0.1048591

0.6996535 0.6996279 0.6996541t
L J-41

Note the accuracy using just one or two terms in the series.

In the rema~ining chapters the concepts developed in this chapter

are applied to controlled Markov chain problems. Efficient two-time-scale

design algorithms result in a near optimal contrcl policy.
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*CHAPTER 5

THE DISCOUNTED COST PROBLEM FOR CONTROLLED MARKOV CHAINS

5.1. Introduction

In this chapter we consider the controlled Markov chain

.(t) - p(t)(-A(u) + B(u)). (5.1)

i When the process is in a given state x, the control policy u(x) determines the

transition rates of the chain.

We assume that a i(u(i)) and b. (u(i)) are continuous on the compact
ij Lj

set U. for all i,j=l,...,n. Thus, a policy uE Rn is of the form

L u(1)1
U s •

Lu(n)J

and can take any value in the Cartesian product UI x U 2 .. x Un  A control

policy u is usually chosen to meet some performance specification. In this

chapter we seek a control policy that minimizes the infinite horizon discounted

cost [14,151

J - E f enf(x ,u(x ))dc (5.2)
0a a

where a is the discount rate and f(i,u(i)) is the instantaneous cost of

being in state i using control u(i). It is assumed that f(i,u(i)) is

continuous on U., for i l,...,n.

In general, there are no closed form solutions to this problem.

Thus, iterative techniques nust be used to obtain the optimal policy. These

methods may be classified as either policy iterations (14] or value iteration3

[1.4-]. ?olicy iterations usually require more computations per iterate,
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however, they often converge faster than value iterations (15]. The large

-* dimension of the generator in (5.1) can make policy iterations impractical.

A(u) adBu a eutiAlso, the order of magnitude difference between ane ~ )cn euti

ill-conditioned nonlinear prograimming problems during the minimization phase

of these algorithms. In this chapter, we apply the results of Chiapter 4 to

obtain a near optimal policy with less computational problems.

In Section 5.2 we motivate our approach to the problem by

decomposing a finite time discounted cost for a fixed policy into aggregate

and fast components. This enables us to identify an "aggregate" discounted

cost problem that we will use to approximate the high order problem (5.2).

In Section 5.3 we consider the solution to the problem (5.1) and (5.2)

as e-a.0. We then establish in what sense the resulting policy is near optimal.

Finally, in Section 5.4, a decentralized algorithm is presented for

obtaining a near optimal control in a computationally attractive manner.

5.2. Decomposition of the Cost for a Fixed Policy

When the policy u(x) is fixed and time is finite, (5.2) reduces to

4t

J(x 0,t) - E f ec'of(x a)dc. (5.3)
xo0

It is well known (141 that J is the solution of

AJ + B)J + f (5.4)

where

f -[f(l),f(2),. ..,f(n)] T (5.5)
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and J(t) is an n-dimensional column vector whose ith entry is the cost incurred

starting in state i at time t.

As in (4.7), (4.12), (4.14) we transform (5.5) using

i -VJ, J -WJ (5.6)
n1 Y

* and obtain

j + aJ VBTJ + VBSJ + Vf (5.7)
- 1r1 Ti ni Y

cJ + caJ - CWBTJ + W(A+eB)SJ + cWf. (5.8)

* Since this system is in standard singular perturbation form, we can apply

Vasileva's two-time scale expansion procedure [13],

J (t) - (t) + X (-,) (5.9)

JY W Y W + Y y(T) (5.10)

where each term is a power series in e with coefficients depending either on

t, for the slow ("outer") series, or on ' , for the fast ("inner") series,

S j°(t) +  l(tl "(5.11

C (T) -£0 (T) + EX (T) +*"' (5.12)
rl fl

(t W j 0 (t) +J 0(t) + . (5.13)
Y Y Y

£ (T) X £(T) + EC1(-)y + 1(5.14)
Y Y Y

Substituting (5.9) through (5.14) into (5.7), (3.8) and equating the terms

with like powers in e, separately for t and - series, we obtain, for zeroth

order terms

dj°(t)d )+ (t) VBTj() Vf, ( J (Xo.O) (3.15)

dt 7J 0 (t *O()Q).1
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Z 0 (r) = 0 (5.16)

-0 t) = 0 (5.17)

01
dT WAUY(r), Cy (0) J (X ,0). (5.18)

We see that within 0(c) the fast part of J and the slow part of J are zero

for all t. Furthermore, due to the asymptotic stability of (5.18) the fast

term £0 (-r) - 0 as r -1 -. For small e this "boundary layer term" is negligible
Y C

for all t> i, where i is of order -cent. Thus, for t> cost J is approximated

within 0(c) by the "aggregate" cost j°(t) defined by (5.15).

For first order terms we obtain

dJ (t)
+ ajn(t) - VBTJ (t) + VBSJ (t) (5.19)

dt Y

'( = VBSe(r), - -Jl(O)

d'r ?I (

3 (t) - -(WAS)-I (WBTj (t)+ Wf) (5.21)Y

~~~dt (T)

-Y + C() - WASZ 1(T) + WS 0°(r) -1 (0) - -(0). (5.22)•dr y y y ' y

Observe that at t-0, r-0 the first order terms in each series sum to zero.

Also observe that r- - all £ terms tend to zero. Hence, by direct integration

(5.20) yields an algebraic expression for £1 (r) in terms of £(T),
Y

I) - VBS(WAS) £ r) (5.23)
fl Y

that is, at each stage, only separate fast and slow equations need to be

solved. An important property is that the fast equations are "decentralized"

groups of states due to the fact that WAS is block-diagonal.
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* From (5.9), (5.10), (5.16), and (5.17) we have

-1 1
J(t) _ jo(t) + e(jl(t) +,t(T)) + 0(c2) (5.24)1-)

*J (t) - £(T) + e (J (t) + ZIT + O(e 2 . (5.25)
Y Y Y Y

Higher order terms can be determined in an analogous manner, or

using techniques [12,13] which are computationally more efficient. Recalling

(4.5), (4.12), (4.14), and (5.6) we consolidate (5.24) and (5.25) into

J - TJ + SJ (5.26)

n Y

which represents the two-time expansion of J for all t. For t large, t- , the

S- C-terms vanish an' the equilibrium (infinite horizon) cost expansion is

J TJ0 + e(TJ1+SJ ) + 2(TJ 2+SJi ) + O(C ) (5.27)
n Y n Y

where Jo 0, n, = etc. are uniquely defined as the equilibriumn n i "1 y

solutions of (5.15), (5.19), (5.21), etc. We see that aggregate cost TJ° is

an O(s) approximation of the full cost J. This fact serves as motivation for

the two-time-scale algorithm developed in Section 5.4.

!

-. 5.3. Near Optimal Control

The infinite horizon discounted cost problem (5.1) and (3.2) is

well defined and can, in principle,be solved using any one of a number of

methods (15,44,53]. In all these methods, the computational burden can be

Lprohibitive for large chains. However, in singularly perturbed models

to reduce computations and improve convergence of design algorithms [71, a

reduced or unperturbed (e-O) problem is solved. The resultina policy



94

obtained is termed "near optimal." In this section we define the "reduced

problem" and in what sense the resulting policy is near optimal.

For the purpose of intuitively understanding the near optimality

results, let us first consider a special case of the more general problem

outlined in Section 5.1. Assume that the control parameter u is a scalar and

that u can take on any value in a segment U0. The Hamilton Jacobi equation

for this problem is

0 min (( + B (u))J+f(u)} - mi {p(ue)} (5.28)

0 0

where

f(u) (f(l,u(l)),...,f(n,u(n))] (5.29)

and B3(u)- B(u)-aI. We now approximate the full optimal control problem

(5.28), (5.2) for c> 0 by a simpler problem defined at e-0. In (5.20) we

cannot let e =0, but if we substitute (5.27) into (5.28),

0 - min(A(u)SJ1 + BL (u)TJ
-f + f(u) + c [A(u)SJ 2 + B( (u)TJ + Ba(u)SJ 1

: ' ,U Y y Y Y

2+ 2  (5.30)

we obtain at e- 0 the "reduced" optimality condition

0 - min{A(u)SJ1 + Ba(u)TJ° + f(u)}. (5.31)uEU Y

We denote a control minimizing (5.31) by u . To avoid technicalities we

assume that the derivatives Au, Ba, and f of A(u), B (u), and f(u) are

continuous and that the unique minima for each row in (5.31) are reached in
4

the interior of U, that is u satisfies

1 a

A (u )SJ1 + B (u )TJ° + f (u)- 0. (5.32)
u n y u n U
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U Note that with u. given, the substitution into (5.31) yields

A(u )SJ + B'(u)TJO + f(u ) - 0 (5.33)
ni Y n 5.3

which, when multiplied by V(u ) and W, respectively, results in

V(u )Ba(u )TJ0 + V(u )f(u ) - 0 (5.34)

WA(u )SJ 1+ WB (u )TJO + WF(u )-0. (5.35)
Ti Y T) n1T

T0  ndS 1

Conditions (5.33), (5.34), and (5.35) uniquely determine un TJ , and SJ1  To

see in what sense un  is near-optimal, we represent the optimal control u* for

(5.28) in the form

u u° + Eu + 0( 2 ). (5.36)

Then we substitute

A(u*) - A(u0 ) + eAu(uo)u I + O(E2) (5.37)

and similar expressions for Bca(u*) and f(u*) into (5.33), that is into

0 - A(u*)SJ1 +B (U*)TJo*+ f(u*) +e[A(u*)SJ2*+B(u*)(TJl
* + S I *

Y n Y n Y
2+0(c ) (5.38)

and obtain

0 =A(uo)SJl* +B(uO)TJo* * ( 0 ) +BcL 0 )TJ0 + ol

Y u y u n u

+A(u 0 )SJ - +Ba(u0)(TJl * +SJ 1 ) } +0(C 2) = i(e). (5.39)
Y u n y

0o nhne jl*
We see from (5.31), (5.33), and (5.39) at E_-0 that u0  u and, hence,

0Y

and jo* are determined by u u . Next we note that the _-term in (5.39) is

zero for all -a 0 because u* is optimal for all :.>O. This term involves the
1

unknown first order optimal control term u However, by (5.32) the expression

multinlying uI is zero. Thus the cost terms SJ and TJ I * are uniquelyy r
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determined by u° . This establishes that when u is found, the series (5.27)

2
for the optimal cost is matched up to (C. Thus un is near optimal in the

sense that

J (u*) - J(u ) - 0( 2). (5.40)

This property that each term in the optimal control series matches two terms in

the optimal cost series is found in other control problems (581.

For the more general problem posed in Section 5.1, it car. be shown

that when u is unique, (5.40) holds without the differentiability require-

ments on A(u), B (u), and f(u) needed in (5.37). This has been shown in (251

based on the theory of extremum in quasi-differentiable functions (60]. The

basic result of (60] ,med in (25] is that

av(+) = (u°'e) A(u )SJ2 + B (u°)(TJl+SJ I ) (5.41)
o +  c-0 +  r Y

where u(e) and P(u,e) are defined in (5.39) and (5.28), respectively. (5.41)

shows that the 0(e) coefficient of the expansion in (5.39) is dependent only

sJ jl and J are determined uniquely by u . For the special

• case assumed in the above deviation we showed this explicitly by observing

that in (5.39) the only nonzero part in the coefficient of e was given by

(5.41).

* When the reduced policy u is not unique, then (5.41) may not hold

and we can only guarantee

J(u J - 0(E), (5.42)

although in practice we could expect much greater accuracy. The importance

of the reduced problem will now be used to develop a decentralized optimiza-

tion algorithm for the infinite horizon discounted cost problem.
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5.4. Decentralized Optimization

In this section a decentralized algorithm is presented for obtaining

a near-optimal control policy to the singularly perturbed controlled Markov

U chain problem of Section 5.1. Since the algorithm is based on value

iterations, it is more convenient to work with the discrete-time version of

(5.1), namely

A/u)

p(k+l) p(k) (A-- + B(u) + 1) (5.42)
e

with discounted cost

J(x ) min E P k+lf(xk,u(xk)) (5.43)
0 ueU x k-0

where O< P< l. The optimality condition becomes

= min p{A(u) + B(u)+ I)J* + f(u)}. (5.44)

uLU £

J* is the n-dimensional optimal cost vector where J. is the cost if the

i process starts in state i, for i- l,...,n.

For any given policy cost J can be found by solving the set of n

linear equations

J [(-+ B + I)J + f] (5.45)

which we can rewrite as

SI+VBT VBS J rVE

L YI+ (5.46)

L WBT W( + B+I)S J4

where J VJ, J 1WJ as in (5.6). Substitution of J J O(;) and J j +o(:)
"(,Y y
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into (5.46) gives Jo 0 and
Y

" p(I+VBT)J0 + pVf (5.47)

and hence,

J -TJ + O(e) (5.48)

which agrees with (5.27). The form of the aggregate cost equation (5.47)

suggests that Jo can be considered as the optimal cost J* for an aggregaten n

problem whose optimality condition is

J*- min ((I+V(u)B(u)T)J*+V(u)f(u)]. (5.49)n ur=U

An optimization algorithm known as the Jacobi iterations [15,44], when applied

to (5.44) and (5.49) is, respectively

jk+ min P{(- + B(u) +I)J +f(u)} (5.50)

Z U

J k+l min P{(I+ V(u)B(u)T)J k + V(u)f(u)}. (5.51)
u

In the aggregate problem (5.51) the dimension is reduced from n to N, but a

difficulty is that it is not obvious how the control obtained in (5.51) depends

on the original states. To avoid this difficulty, we rewrite (5.51) in the

form

1k+l min o(V(u) [(I+B(u))TJk f(u)] (5.52)

n u .1

and interpret the term in the brackets as the cost g k(u) of an average cost-

per-stage problem. It is an n-column vector which can be partitioned into N

subvectors g (uj ) corresponding to strongly interacting groups of states,
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3 described by decoupled fast chains A (uj ) where uj denotes controls-for states.

in J-th group. The solutions for the average-cost-per-stage problem for each

fast chain exist under the ergodicity assumption on A (uj). They can be

* found using algorithms such as [54,55]. Then (5.52) is rewritten in a

decentralized form

-k+l min P(v (uJ)gk(uj)I .i3)

1 uj  [

for each group J- 1,...,N. Therefore, if at step k a "coordinator" obt.

the results of (5.53) calculated locally in each group, its role is to cu...-

solidate the result in the form of J k+l. This information- is then used ton

form the new fast cost g k+l(u) according to

*k+i
g (u)- [I+ B(u) ]TJk+l + f(u). (5.54)

Graphically, this algorithm has the decentralized structure in Figure 5.1.

The aggregate Markov process assumes that the "fast chains" have

reached their steady state probabilities V.. Each aggregate iteration (5.53)

is in fact an infinite horizon problem for the "fast chains." These infinite

horizon minimizations are in the form of N separate average cost per stage

problems with respect to the costs g k(uJ), j- 1,...,N. These costs contain

not only the instantaneous subsystem cost f(uJ), but also the cost contribu-

tions due to coupling to other subsystems. It is the latter that enables the

fast problems to be solved independently. Other iterative algorithms, such as

Gauss-Seidel [15] can be decentralized in a similar fashion.

We can now show that the limiting (k--) policy u- in (5.53)

1satisfies (5.31) with -- , thus establishing the near optimalitv of u
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Lemman 5.1: The policy obtained in (5.53) as k-- satisfies the reduced

optimality equation (5.31). Thus, if the policy u is unique, thenT1i

J 7(u )_j*- (2

Proof: From (55], we can express the limit in (5.53) as N average cost per

stage optimality equations of the form

J 1 - min p(A (uJ)c +g(uJ)) (5.55)

j - uj j

c (u T J + +B (uj) T J +
i=. in p (A (uj )c +BI(U)TJ + N+ +f(ui)) (5.56)

~ i il 1Ti jN Xn i j,"uj N j

or in vector form

TJ = min p(A(u)c+B(u)TJ +TJ + f(u)) (5.57)
S u

where cERn are dual variables as defined in [14,55]. When u-u (5.57)

becomes

TJ = P(A(u n)c+B(u )TJ +TJ + f(u)). (5.58)

Premultiplying by W we obtain

0 - WA(u )c + WB(u )TJn + Wf(u ) (5.59)

which, from (5.35) uniquely defines c as SJ 1 . Thus, letting a> 0,
Y 1+a

(5.57) takes the form

aTJ0 = min{A(u)SJ +B(u)TJ ° + f(u)} (5.60)
1 n Y nu

which is equivalent to (5.31), thus from Section 5.3, the 0( 2) optimality of

the cost using policy u is established. In concluding this chapter, several

useful properties of this algorithm should be cited.

1. No system of linear equations of any order need ever be solved.

I



2. Storing "aggregate" iterations of the form BT rather than just

B reduces the number of computations and memory requirements.

3. The algorithm is independent of the small parameter e. Thus,

in general the algorithmic stiffness of the high order problem

has been removed.

4. Fast chains perform their local minimizations in parallel. Fast

costs are updated on the slow time scale by receiving only

J k G ER Nfrom the aggregate coordinator.
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CHAPTER 6

THE AVERAGE COST PER STAGE PROBLEM FOR CONTROLLED MARKOV CHAINS

6.1. Introduction

In many controlled Markov chain problems the discounted cost is

not a physically meaningful measure of system performance. In such cases the

average cost per stage [55,44,15] is commonly used. In discrete time, this

cost function takes the form

1 T
J - min lim E1 Z f(xku(xk)) (6.1)

-- U T_- x k-O

where U and f(i,u(i)) are defined as in the discounted case.

In this chapter we again use the two-time-scale property of (5.42)

to develop a computationally efficient algorithm for obtaining a near optimal

control policy u for the problem defined by (5.42) and (6.1).

In Section 6.2 the optimality conditions for the average cost per

stage problem are preserved and the cost for a fixed policy decomposed into

"fast" and "aggregate" components.

In Section 6.3, we consider the solution to the problem (6.1) as

-0 in (5.42). This results in a reduced problem for which a near-optimal

policy is obtained.

In Section 6.4 a decentralized algorithm is developed for obtaining

a near optimal policy in a computationally attractive manner.

Finally, in Section 6.3, an example is given illustrating the decen-

tralized algorithm.
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6.2. Decomposition of the Cost for a Fixed Policy

* :In this section we assume that the control policy u is fixed and we

wish to obtain the corresponding cost (6.1). By using the two-time-scale

property of (5.42) we will attempt to decompose the cost J into "fast" and

"aggregate" components. This will lead us ot the concept of the dual

variables cE Rn, and their decomposition into "fast" and "aggregate"

components. These results will be of importance in the next two sections.

Under the assumptions of Chapter 4 and Section 5.1, (6.1) can be

written in the convenient form

J - min (u)f(u) (6.2)

where f(u) is defined in (5.29) and p(u) is the n-dimensional row vector of

steady state probabilities defined by

(u) =(u)(A(u) + B(u) + I)
E

or

0 "(u)( -- + B(u)) (6.3)
E

and n

Z i~ 1 (u) 
= 1. (6.4)

Note that unlike in Chapter 5, here J is independent of initial state and is

thus a scalar. Hence the optimal cost per stage is the same for all states.

Assume that there are only a small number of policies from which

to choose. In this case, it may be simpler to evaluate (6.2) for each ?olicv:

and pick the minimum. Unfortunately, (6.3) usually represents a large 3etI
of ill-conditioned linear equations. However, as we have shown in Chapter e

(u) can be written in the form

"3(u) = n(u)V(u) + T(u)'N.
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U Then, for a given policy, (6.2) takes the form

J - Vf + 5Wf

f + f Y (6.6)

where r and 7 can be computed efficiently using the asymptotic series solution
developed in Chapter 4.

VAs an alternative to this approach, consider the optinality equation

for the average cost per stage problem

J*l - min{A(u) + B(u))c*+ f(u)} (6.7)

u.EU

where J* is the optimal average cost per stage and c*E Rn the optimal dual

variables as defined in [55]. Given a policy we could solve (141

Jl (AM + B(u))c + f(u) (6.8)

for J and c and pick the policy with minimum J as optimal if the number ofI
policies is small. Again, to avoid solving this usually large set of possibly

ill-conditioned linear equations (6.8) we premultiply (6.8) by [;] Define

c n= Vc, c = Wc (6.9)

and obtain

SVBT VBS 1 1 [= 1+ I. (6. 10)

01'=[ WBT W(A+£B) S C Wf

Expanding J, C , and C in asymptotic power series of the form
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J -J + eJ + * (6.11)
0 1

Cn iC + EC' + * (6.12)

C "C0 + cC 1 + "(6.13)

YI Y Y

we obtain C0 -0, and the remaining terms defined by

J 1 VBTC 0 + Vf (6.14)

1 -~1C - -(WAS)- (WBTCO +Wf) (6.15)
Y T

J11.1 VBTC 1+ VBSC (6.16)
1- y

C 2 -(WAS)- (WBTC I+ WBSC 1 (6.17)
Y Ti Y

k kJ 1 VBTC + VBSC (6.18)

k+1 -1 k k
C - (WAS) (WBTC + WBSC ).(6.19)
Y Ti Y

(6.14)-(6.19) can be solved on a reduced order basis. Note that (6.14), (6.16)..

(6.18) have more unknowns than linear independent equations. One way around

this problem as recommended in (141 is to set one of the C ks equal to zero

kn
for all k. Once this is done the remaining C s and J can be calculated

Ti. k

uniquely.

k k+l
Once C is found, C is uniquely determined. This property of non-

n kY
uniqueness of C kis to be expected since if C* is the optimal dual variable in

(6.7), so is G*+ 31, V6E R. Thus, if we follow the above procedure in

k k
computing Jk Cn., and C Y, we will obtain the unique average cost per stage

* eiven by (6.11) and the dual variables C given by

C T 'C + SC (6.20)
n y
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U will be unique to within an additive vector of the form 61, 66 R. Using

" either (6.6) or (6.10) we can efficiently compute the avarage cost per stage

for a fixed policy.

Before concluding this section, it is interesting to note that

(6.14) is of the form of an "aggregate" average cost per stage equation with

transition matrix I+ VBT and instantaneous cost Vf. This idea will be of

significiance in Section 6.4.

6.3. Near Optimal Control

The problem defined by (6.1) and (5.42) can, in theory, be solved by

a number of different methods (14,54,55]. However, analogous to Section 5.3

for the discounted problem, we wish to take advantage of the singularly

perturbed model of (5.42) to obtain a reduced or unperturbed (e=0) problem.

In this section we define the "reduced" average cost per stage problem and

establish in what sense the resulting policy is near optimal. The results

of this section are obtained in much the same way as the near optimality

results of Section 5.3 for the discounted cost problem. Therefore, to avoid

redundancy, many references will be made to that section.

Again, for intuitive understanding consider first the special case

where u is a scalar and takes on values in a segment Uo . The optimality

equation for this problem can be written in the form

0 - min ((A(u) + B(u))C+f(u)-J } = min{P(u,E)} (6.21)

where f(u) is defined in (5.29). For any policy, C and J have the form (6.11)
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and (6.20). Substituting these forms into (6.21) we obtain

0 -min {A(u)SC +B(u)TC 4-f(u)-Jo1

+ C(A(u) SC 2+ B(u) (TC +JiC1 )-J 1) +0O( 21 (6.22)
Y 11 Y

Thus, the optimality condition for the reduced problem becomes

0 -min (A(U)SC + B(u)TC 4f (u)-J -11. (6.23)

0

* Again denote the control minimizing (6.23) as u .Assume that the derivatives
Ti

Aut B u and f uare continuous and that the unique minima for each row in

(6.23) are reached in the interior of U 0 thus

A (u )SC + B (u )TC 0+ f (u) 0 (6.24)
U n~ u U l Ti 1 U

and with u ngiven, we obtain

0 1
J 1 =A(u. )SC + B(u )TCO + f(u ).(6.25)

n T Y ni Ti T

Premultiplying (6.25) by V(u TI) and W results in

1J01 V(u. )B(u )TCO + V(u Mfu )(6.26)

0 WA(u )SC 1+ WB(u. )TC 0+ Wf(u )(6.27)
ni '( n Tn

which are in the form of (6.14) and (6.15) and hence can be solved uniquely

0 1 0
*for J , SC , and TC To see in what sense u is near optimal, let the

optimal control of (6.21) u*, have the series form (3.36). Then substitute

(3.37) and analogous expressions for B(u*) and f(u) into (6.22) and obtain
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0 - A(u ° )SC 1 + B(u0 )TC* + f(u °) - Jol + C([A (u 0)SC1 +B (u )TC + f (u°) ]u1
Y -- u U n

+A(u°)SC 2 +B(u°)(TC 1+scl)-Jl1)+ 2) (6.28)
Y Yn Y -

0 0* 1*
From (6.25) and (6.23) at e-0, u Mu and thus J , C , and C are deter-

mined by u . Next, note that due matching, the e-term in (6.28) is zero

' VE > 0 since u* is optimal Ve 0. This term involves the unknown first order

1 1optimal control term u . However, the expression multiplying u is, by (6.24),

1* 2* 1*
identically zero. Thus, J , SC , and TC are obtained from

1 J**Au 2 o 1 1J 1 - A(u°)SC + B(u°)(TC + SC ) (6.29)
Y n~ Y

and hence are uniquely defined by u° - u Therefore, when u is found, the

series for the optimal cost (6.11) and optimal dual variables (6.12) and

(6.13) are matched up to 0(e 2 Thus u is near optimal in the sense that

nn•.J(u n ) -J* O(' 0 2 ) (6.30)

C(un)- C* = 0(€2)

For the more general problem posed in Section 6.1, it can be shown [60] that

* when u is unique (6.30) and (6.31) hold without the differentiability require-

ments on A(u), B(u), and f(u). This discussion is given in Section 5.3 and

will not be repeated here.

6.4. Decentralized Optimization

In Section 6.2, the cost for a fixed policy was decomposed into

"aggregate" and "fast" components. This enabled reduced order computations

for finding the cost. Thus, for a small number of policies, the cost for each
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policy computed and the optimal chosen. When the number of policies is large

or infinite, an exhaustive search for the optimal policy is impractical and

one of many iterative policy improvement algorithms must be used [14,54,55].

In this section we present a decentralized algorithm for computing a near

optimal policy to the average cost per stage problem posed in Section 6.1.

The structure of the algorithm is similar to that of Section 5.4 for discounted

problem and hence offers the same computational advantages.

For every policy uE U, p(u) can be written in terms of the

"aggregate" and "fast" states as in (6.5). Substituting (6.5) into (6.2) we

obtain

J , mi n{(u)V(u)f(u) +Y(u)Wf(u)}. (6.32)
UeU

However, y(u) is uniquely defined by

Y(u) - -si(u)V(u)B(u)S(u)(W(A(u)+ eB))S(u)) - 1

- -CF(u). (6.33)

Thus, (6.32) takes the form

J - min{;(u)f(u)} (6.34)
* uGLY

where

i(u) -(~)e~)~~)

* Thus, the control problem has been reformulated in terms of the aggregate

states R R. For a given policy we may compute J from (6.34) or by solving

the following set of linear equations for J and the aggregate dual. variables

C -a_ R

6 oR



J 1 (V(u)-eF(u)W)B(u)TC + f(u) (6.35)-- I

where (V(u)-eF(u)W)B(u)T is the perturbed aggregate generator. Then the

i optimality equation for the aggregate problem (6.34) becomes

J 1 - min{(V(u)-cF(u)W)B(u)TC + t(u)}. (6.36)
-eu n

Assume now that for an arbitrary policy ukwe have obtained the corresponding

k" aggregate dual variables C . In most iterative algorithms [14,59,55], to

k
improve the policy u , the following minimization is required

h(C k min((V(u)-eF(u)W)B(u)TCk+ f(u)}. (6.37)
teU E

In the limit as k )-, h(Ck )- Jl. The elements of the aggregate generator and

instantaneous cost are complex nonlinear functions of the controls for many

* of the original states and the minimization in (6.37) is difficult to carry

out if not impossible. Thus, we have saved little by solving the low order

U aggregate problem (6.36) as opposed to (6.7) unless a further simplification

is made. By letting - 0 in (6.37) we obtain

h(C k min{V(u)B(u)TC k+V(u)f(u)}. (6.38)
n uEU n

As expected, this optimization problem is equivalent to one we

obtain if we were interested in minimizing only the 0th order aggregate cost

term in (6.14). In other words, in (6.38) we are seeking a near optimal policy

that satisfies the reduced optimality equation

J - mii{V(u)B(u)TC ?I+V(u)f(u)}. (6.39)
tiEU

The analogy with the discounted problem of Section 5.4 should now be clear.

We proceed to interpret the minimization operation in (6.38). The need to
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know V(u) as a function of u and the inability to disaggregate the policies

obtained in (6.38) back to the original states makes the minimization of

(6.38) impractical in its present form. This difficulty can be avoided by

rewriting (6.38) in the form

kh(c min{V(u)[B(u)TCk+ f(u)]}.(6.40)

As in the discounted problem, partition u and f(u) according to the

fast subsystems

u' f(u)

2 f(u2)

U fu) -- (6.41)

N f(u)N
U

To more clearly see the form of the vector B(u)TC +f(u) we note that for a

three class system it takes the form

B(I(u )T C k + B 2 (u )T2C k + CI3 (u )T3Ck + f(u )

11 11 1 1 2 13 3 3

B1(u 2 )T Ck + B2 (u2)T ck + B2(u2)T ck + f(u2 (6.42)
1~(u in 1  B22 ( 2 n2  B2 2 ( T 3 fn u)

3 k 3 k + 3 k3
LB3 1 (u )T1 C + B3 2 (u )T2C n2 + B3H(u3)T3Cn3+ f(u)

It is crucial that each row i of (6.42) is a function of only one control

u(i), i-l,...,n. tWe can interpret each row of (6.42) as a cost k (u(i))

k
depending on a single control for a given Ck . If we partition this cost

according to the fast subchain dimensions we obtain

"I
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g k(u )

k 2k- ggk
,(U)m (6.43)

*~ kNLg (u )

This, (6.40) takes the form

-M h(Cn) - min{V(u)g k(u)}. (6.44)
LuEU

However, since V(u) is block diagonal, (6.44) can be written as

h (Cnk ) - min {Vl(u1)gk(u 1 (6.45)

h k(Ck) - min {VN (uN)gk(uN (6,46)
N ~uNeU N

This formulation points out the possibility of decentralization, because

(6.45)-(6.46) are average cost per stage problems for the fast chains A.(ui

with respect to the instantaneous cost gk(u i) ..... which can improve

the controls at a "local" subsystem level using "local" costs g k(u ). The

gk (u i) 's are updated on a slower time scale at the agogregate level which

k+lassigns the new C

Once the vector h(Ck) RN is computed, different algorithms [14,54,551

k+l
use different means to update the dual variables C l . A recently developed

algorithm for this problem is due to Varaiya [551. We now use this al'gorithm

to illustrate the hierarchical structure of the decentralized optimizations

(6.43)-(6.46).
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The first thing we must establish is that the problem we are

attempting to solve is a well defined average cost per stage problem

satisfying all the conditions necessary for Varaiya's algorithm to converge to

the optimal policy. The problem we are trying to solve is summarized in (6.39).

First note that I+ V(u)B(u)T is a well defined transition matrix whose elements

*depend continuously on uG U. Second, under the ergodicity assumptions on

(5.42), I+V(u)B(u)T contains a single ergodic class YuE U. And finally,

* V(u)f(u) is a well defined vector of instantaneous costs whose elements depend

continuously on the vector u. Thus, the problem satisfies the conditions in

[33] necessary for the algorithm to converge to the optimal policy. We now

review Varaiya's algorithm for the high order problem (6.7).

0 0Given an arbitrary C° , define h(C ) as the vector of values resulting

from the n pointwise minimizations

h(C°) - min{(A(u-) + B(u))C°+f(u)}. (6.47)
uEU

The algorithm then proceeds as follows: Let

h(C°) - max h.(C ° ) (6.48)

h(C° ) min h.(C°) (6.49)
1

and find CI1 C + Atf(C ° ) according to a discretization of the differential

equacion [56]

dc :hc

df h(c) - h(c)L111 = f(c). (6.50)

Then C is used to obtain h(C ) as in (6.47) and the cycle continues.

Converaence is monotonic and can be "measured" since 7£Ck)-h(Ck)-0 ad k-.

n(C )h(C~--0 a k-1
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I We now apply this algorithm to solve (6.79). For a given initial

C0 , define h(CO) aN as
n

h(C° ) - min{V(u)gO(u)} (6.51)
|'n U

where

g 0 (u) - B(u)TC° + f(u). (6.52)

In component form (6.51) becomes

h (CO) = min {V(u 1 )g°(u )1 (6.53)

h (C) = min {V (u )g(u N }. (6.54)
N In N N

Each "fast" chain average cost per stage minimization in (6.53)-(6.54) can

be solved in parallel using, for example, Varaiya's algorithm. The results

of the minimizations gives

01 1 01
h1I(CO) 1 = min {A1 (u )C +g (ul))

1u1
u• (6.55)

h (C) 1A NCN + oNhN() 1 mrin AN(uN N~°uN
uNEuN

Li EL
nt.

where C EIR i=1,...,N are the dual variables during the fast optimizations.

Note that h,(C ° ) is the optimal average cost per stage for fast chain i under
i ni

instantaneous cost ao(uL), -i r i,

Let

h(C0 ) = max h(C° ) (6.56)

T1 i

hj(C 0 ) =min h(C0 ) (6.57)
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and find C 1 C +at f(C ) according to a discretization of the differential
n n n n

equation

dcn h( ) i
dc h(C - [h(C ) il1 f(Cr). (6.58)
dt n N

Use C1 to update the fast cost

q i.(u) = B(u)TCI + f(u). (6.59)

Intuitively, the Ci's "distribute" information about the "motion" of the total
n

system relative to each fast subsystem. The aggregate interactions, B(u)T in

(6.59), are "weighed" accordingly and the updated cost g (u), i 1,...,N is

obtained. It is this component of the cost g (u) in (6.59) that allows the

optimizations of (6.55) to be carried out independently. Next, (6.51) is

solved for h(C ) given g (u) and the cycle continues. Convergence occurs when

h(Ck_ )h (Ck) < 6

where 5 is some design tolerance. Thus, the aggregate serves as a

"coordinator" passing and receiving the necessary information between sub-

systems allowing the subsystems to compute "local" controls that are

"globally" near optimal. Graphically, the aggregate coordination scheme is

given in Figure 6.1.

We now show that the limiting policy (k--) in (6.55) satisfies

optimality equation (6.23). Thus, the near optimality results of Section 6.3

hold.

Lemma 6.1. Let u be the near optimal policy obtained using the two-time

scale al-orichm. Then if u is unique, J(u ) satisfies (6.30).

Il
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h Ih(C k umin{V(U1 k(ulk1)

h Ck Ck+1

h (C k min{VN(u N)g k(u N)I h (C k min{V 2 )g k(u 2}
N k+l h Ck 2 TI 2V2(

hNC Aggregate

Coordinator

k+1 k
C Cn+ h.(C)n

h Ck )-mnV(i gk (

Figure 6.1. Two-time-scale average cost per stage algorithm
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Proof: When the algorithm converges, (6.55) becomes

J(u) - m {A(u )C + g(u )}

U 1UEU' (6.60)

J(u) min {AN(uN )C N+g(uN)}

~uN

or in vector form

J(u ) 1 min{A(u)CF+g(u)} (6.61)

where

C
1.

C 2

CF - R (6.62)

.L •

is the vector of dual variables resulting from the fast subproblems. We now

show how CF relates to the expansion terms of Section 6.1.

From (6.59), (6.61) becomes

4 J(u ) 1 min{A(u)CF+B(u)TC +f(u), (6.63)

and at u u,

J(u ) 1 A(un)CF + B(u n)TCn + f(u (6.64)

Prenultiplying by V(u ) and W we obtain

J(u) 1 = V(u )B(u )TC + V(u )f(u ) (6.65)

0 = WA(u )C- + WB(u )TC + Wf(u ) (6.36)

• ~~~~~r n I .. .i
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1 0
which, from Section 6.2, uniquely defines CF as SC and Cn as C Thus,

(6.63) becomes

J(un) 1 - min{A(u)SC +B(u)TC ° +f(u)) (6.67)
- uEU n

which is equivalent to (6.23). Thus, if un  is unique, then J(u )-J*- O(C 2)

The attractive computational aspects of tha algorithm are the same

- as the algorithm for the discounted problem and are listed at the end of

Section 5.4. We close this chapter and this thesis in the next section with

an example.

6.5. Example - Minimizing the Average Cost Per Stage

In this section we given an example of applying the algorithm pre-

sented in Section 6.4. The controlled Markov chain we will be considering has

the following state transition matrix:

45 I.4J 0 .05 .05 0 0 0 0 1

.27 .36 .27 .03 .04 .03 0 0 0

0 .72 .18 0 .08 .02 0 0 0

•5u .u 0 .45-.5u .45-.5u 0 .05 .05 0

•3 !.4.3 .27-.34 .36-. 4 4 .27-.3p .03 .04 .03

0 .Sii .2u 0 .72-.Su .18-.2u 0 .o8 , .02

0 0 0 u .5u 0 .5(l-') .0(l-,) o

0 0 0 .3u .4u .3u .3(1-u) .4(I-.) .3(1-u)

0 0 0 0 .Su .2u 0 .8(1-,) .2(-

(6.68)
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where the states are defined by

Xl x2 x3 x 4 x5 x6  7 x8 x 9

G 2 2 2 1 1 1 0 0 0 (6.69)

D0 1 2 0 1 2 0 1 2

The control problem can be visualized as one of maintenance scheduling. From

(6.69) the state of the process is defined by the variables G and D. G

corresponds to the number of power generating units available while D

corresponds to the demand in terms of generating units needed. Markov models

of this type are common in optimal resource scheduling problems [22,59].

The units have a common failure rate over which we have no control.

On the other hand, we can control the rate of repair. By increasing the repair

rate, the probability of repairing the generator during the next unit time

interval, 4, improves.

The higher probability of repiar is obtained only by increasing the

system cost due to assigning labor, new parts, etc. Therefore, the control

variable will be the scalar quantity p taking values in the closed interval

.02< ,p< .2. When the process arrives in one of the nine states identified in

(6.69), the amount of maintenance scheduled is proportional to 4. Hence, the

control problem is to find the policy u(G,D) that minimizes the average cost

per stage (6.1) with instantaneous cost

f(G,D,w(G,D)) - [(D-G)+!]- +K(u(G,D)) - Z 6.70)

where (b) =max(0,b). This cost is composed of two terms: [(D-G) penalizes

for not meeting the demand while K(,a(G,D))" penalizes maintenance costs. Thujs,

the problem is well defined and possesses a nontrivial iolution.
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A

Note that (6.68) is of the form A+B+I where

11 ".09 .09 0

.054 -.108 .054'

0 .144 -.144

I -.08+lu .09-.l1i 0 I

A= 1 .0.54-.06ti -.108+.12u .054-.06,I

0 .144-.16u .144+.16ui
I0

I-.1i+.i z .1-..1 0

.06- .06 -.12+ .12u .06- .06 1,

0 .16-.16u -.16+.16u

(6.71)

and

-.1 0 0 1 .05 .05 0
1

0 -.1 0 .03 .04 .03 1 0

0 0 -.11 0 .08 .02 _

.5u .5u 0 1 --. i 0 0 .05 .05 0

B- .3u .4u Au1 0 -4-.1 0 .03 .04 .03 (6.72)

*0 .Au .2u1 0 0 -u-.1 0 .08 .02

I .54 .5u 0 -P 0 0
00 1

*3. .4u .3u.' 0 u

I 0 .8u .2 0 0 -u

where -. 2 in (6.68). First the problem was solved using K- 30 in (6.70).
Using the algorithm of Section 6.4, the following near optimal policy u was

obtained
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.02

.02

.02
II .1111

U .111 " (6.73)

.09

.162

.142

.086

For the purpose of comparison, the optimal policy u* was computed for several

values of e including e- .2. These results are given in Table 6.1.

Table 6.1. Optimal policies and cost for K- 30

E .5 .2 .15 .1 .05 .01

.02 .02 .02 .02 .02 .02

.02 .02 .02 .02 .02 .02

.02 .02 .02 .02 .02 .02

.092 .104 .106 .108 .110 .111

]*(G,D) .107 .111 .111 .111 .111 .111

.178 .111 .107 .102 .097 .092

.088 .126 .134 .143 .152 .16

.138 .144 .144 .144 .144 .143

.2 .149 .136 .121 .104 .090

* .65776 .671 .67145 .67095 .66913 .66648

J(u) .697221 6811 1.677671 .673991 .669991 .66654

Table 6.1 clearly illustrates the convergence of u* to u, as -. Also in

2
Table 6.1, note that J(u )-J* < S for all values of e. To see the effects
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of changing the cost coefficients in (6.70), let K-20. The near optimal policy

u. is then

.02

p.02
.02

.140

u = .140 (6.74)

- .108

.200

.190

.102

and the optimal policies for various values of e given in Table 6.2.

Table 5.2. Optimal policies for K 20

K

.5 .2 .15 .1 .05 .01

.02 .02 .02 .02 .02 .02

* .02 .02 .02 .02 .02 .02

.02 .02 .02 .02 .02 .02

U*(G,D) .114 .129 .132 .135 .138 .140

.135 .139 .140 .140 .141 .141

.165 .140 .133 .126 .118 .110

.116 .167 .178 .191 .200 .200

.185 .192 .193 .193 .192 .191

.200 .200 .180 .158 .122 .108

These results confirm our intuition in that lower values of K result in more

maintenance scheduled (higher values of 4(G,D)). From a computational point

of view, the advantages of the two-time-scale algorithm over the standard

method were significant. For this example, these advantages can be summarized
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as follows:

i) Memory requirements -The ability to aggregate interactions in

the form of BT combined with having to solve only subsystem

problems reduced on line storage requirements by about a 3 to 1

ratio.

ii) Decentralized computations - The computations are performed in a

decentralized manner allowing distributed computing when needed.

iii) Ill-conditioning - As c becomes smaller, the orders of magnitude

difference between A-u) and B~u) causes the high order problem to
E

converge very slowly. The two-time-scale solution is independent

of e and converges rapidly.

iv) Computation time - Due to both the reduced dimension of the sub-

system problems and the improved conditioning of the two-time-

scale algorithm, CPU time was significantly reduced. For e-= .2

the reduction in CPU time was about 3 to 1, for e - .1 about 6 to 1,

and for e- .05 about 12 to 1.

In conclusion, this simple 9th order example has clearly demon-

strated the usefulness of the two-time-scale algorithm. For more complex

controlled Markov chain problems (21,59,62], the advantages of this algorithm

will be of even greater significance.
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CHAPTER 7

CONCLUSIONS

The need to analyze and control large scale systems is a researchI
area that will always remain rich in potential. More demanding performance

leads to more complex models necessitating the research and development of

improved analysis and design techniques. This thesis has helped to unify

one area of such research and open up another potentially promising new area.

In Chapters 2 and 3 we considered deterministic linear time-

- invariant systems and the existence of a "two-time-scale" property. It was

shown that the reduced order modeling obtained through singular perturba-

tions was directly related to dominant left and right eigenspace power

iterations. This led to a unified design methodology for reduced order

modeling and control of two-time-scale systems from which many previous design

methods were shown to have been special cases.

In the remainder of this thesis, we considered stochastic systems

which can be modeled as large finite state Markov processes. The "weak" and

1"strong" transition probabilities characteristic of many Markov chain models

was interpreted as a two-time-scale property through singular perturbation

modeling. This led to the concept of a reduced order "aggregate" Markov

chain. This enabled reduced order asymptotic series solutions to be obtained

for the steady state probability distribution, a problem frequently

encountered in queueing theory. The aggregate model is then used to obtain

near optimal policies for controlled Markov chain problems. The resulting

optimization algorithms are decentralized in the sense that fast subsvsteTs

compute their controls "locally" with the aggregate coordinating necessary
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information between subsystems on a slow time scale. This avoids much of the

computational burden associated with many controlled Markov chain problems.

The performance functions considered were the discounted cost and the average

cost per stage.

The potential areas for further research and applications are

numerous. Performance analysis of computer systems and numerical solutions to

complex stochastic control problems seem to be the most immediate application

areas. Research areas include incorporating dominant transient states [25]

into the two-time-scale model (5.1), decentralized control over a finite time

horizon, and Markov modeling techniques that result in the form (5.1). Many

new results are now starting to appear in these areas [25,57,61,62). The

theoretical richness of this research area combined with numerous potentialVS
application fields should result in many more significant contributions to

Markov modeling and Markovian decision processes in the near future.

0
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